Yankova Rumyana, Yotova Tsvetelina, Avramov Mario, Benkova Daiana, Dimov Dimitar, Kostadinova Aneliya, Markov Pavel
University "Prof. Dr. Assen Zlatarov", Burgas, 8010, Bulgaria.
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria.
J Mol Model. 2025 May 19;31(6):160. doi: 10.1007/s00894-025-06387-8.
This study investigates the synthesis, structural characteristics, thermal properties, and biological activity of the double selenate salt NaCd(SeO)·2HO. The synthesis of this compound was driven by the need for novel materials with potential applications in medicinal chemistry and materials science. The structural integrity and physicochemical properties of NaCd(SeO)·2HO were confirmed through a series of characterization techniques, including FT-IR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic light scattering (DLS), and zeta potential measurements. The thermal behavior of the compound, exhibiting a multi-stage decomposition pattern, provides important insights into its stability and transformation mechanisms, essential for its potential use in various applications. Biological testing, conducted on the HepG2 liver cancer cell line, revealed a dose-dependent cytotoxic effect, with morphological changes and cytoskeletal disruption at higher concentrations, highlighting the compound's anticancer potential. The compound also demonstrated a high zeta potential, indicating good colloidal stability and suggesting favorable bioavailability. These findings underscore the relevance of NaCd(SeO)·2HO for biomedical applications, particularly in anticancer therapies, where its unique combination of properties may offer therapeutic advantages.
Quantum chemical calculations were performed using density functional theory (DFT) to gain insights into the electronic structure, molecular geometry, and nonlinear optical (NLO) properties of NaCd(SeO)·2HO. Molecular electrostatic potential (MEP) mapping revealed nucleophilic and electrophilic activity regions, pointing to possible reactive sites. Frontier molecular orbital (FMO) analysis indicated a moderate HOMO-LUMO energy gap, suggesting a balance between stability and reactivity. Thermal decomposition stages were characterized using TGA and DSC, with identifiable mass loss steps corresponding to water release and selenium dioxide formation. In vitro biological evaluation was conducted on HepG2 cells using MTT assays, immunofluorescence staining, and morphological analysis. The IC₅₀ value was established at approximately 0.05 µg/ml. Zeta potential and DLS analyses were employed to assess colloidal behavior and particle distribution. Together, these methodologies support the promising physicochemical and biological profile of NaCd(SeO)·2HO, justifying its further investigation for nanomedicine and drug delivery applications.
本研究探究了双硒酸盐NaCd(SeO)·2HO的合成、结构特征、热性质及生物活性。合成该化合物是出于对在药物化学和材料科学中具有潜在应用价值的新型材料的需求。通过一系列表征技术,包括傅里叶变换红外光谱(FT-IR)、热重分析(TGA)、差示扫描量热法(DSC)、动态光散射(DLS)和zeta电位测量,证实了NaCd(SeO)·2HO的结构完整性和物理化学性质。该化合物呈现多阶段分解模式的热行为,为其稳定性和转化机制提供了重要见解,这对于其在各种应用中的潜在用途至关重要。对肝癌细胞系HepG2进行的生物学测试显示出剂量依赖性细胞毒性作用,在较高浓度下出现形态变化和细胞骨架破坏,突出了该化合物的抗癌潜力。该化合物还表现出较高的zeta电位,表明具有良好的胶体稳定性并暗示其具有良好的生物利用度。这些发现强调了NaCd(SeO)·2HO在生物医学应用中的相关性,特别是在抗癌治疗中,其独特的性质组合可能具有治疗优势。
使用密度泛函理论(DFT)进行量子化学计算,以深入了解NaCd(SeO)·2HO的电子结构、分子几何结构和非线性光学(NLO)性质。分子静电势(MEP)映射揭示了亲核和亲电活性区域,指出了可能的反应位点。前线分子轨道(FMO)分析表明HOMO-LUMO能隙适中,表明稳定性和反应性之间达到平衡。使用TGA和DSC对热分解阶段进行表征,可识别出对应于水释放和二氧化硒形成的质量损失步骤。使用MTT法、免疫荧光染色和形态分析对HepG2细胞进行体外生物学评估。IC₅₀值确定约为0.05μg/ml。采用zeta电位和DLS分析来评估胶体行为和颗粒分布。总之,这些方法支持了NaCd(SeO)·2HO具有良好的物理化学和生物学特性,证明了对其进行纳米医学和药物递送应用的进一步研究是合理的。