You Yiwei, Zhang Dexin, Wu Zhifeng, Lü Tie-Yu, Cao Xinrui, Sun Yang, Zhu Zi-Zhong, Wu Shunqing
Department of Physics, Xiamen University, Xiamen, 361005, China.
Nat Commun. 2025 May 19;16(1):4630. doi: 10.1038/s41467-025-59895-9.
Solid-state lithium metal batteries using garnet-type LiLaZrO electrolytes hold immense promise for next-generation energy storage, but grain boundary defects promote lithium redistribution and dendrite formation, compromising performance and safety. To address this, we investigate lithium behavior at these boundaries using machine learning potentials and molecular dynamics simulations. Energy minimization drives lithium accumulation or depletion at grain boundaries depending on cavity fraction and local lithium concentration. Crack-like boundary voids facilitate lithium protrusions and dendrites at the electrolyte/negative electrode interface, increasing short-circuit risks. Controlled grain boundary melting achieves selective amorphization while preserving bulk crystallinity. This structural modification slightly reduces ionic conductivity but enhances interfacial electronic and mechanical properties, suppressing lithium aggregation and alleviating interfacial protrusions. In this work, we demonstrate how grain boundary structures govern lithium redistribution dynamics and dendrite formation mechanisms. We further propose targeted grain boundary amorphization as an effective strategy to engineer robust solid-state electrolyte microstructures that improve battery cyclability and safety.
使用石榴石型LiLaZrO电解质的固态锂金属电池在下一代储能领域具有巨大潜力,但晶界缺陷会促进锂的重新分布和枝晶形成,从而影响电池性能和安全性。为解决这一问题,我们利用机器学习势和分子动力学模拟研究锂在这些边界处的行为。能量最小化会根据空洞分数和局部锂浓度在晶界处驱动锂的积累或消耗。类似裂纹的边界空洞会促进电解质/负极界面处的锂突出和枝晶形成,增加短路风险。控制晶界熔化可实现选择性非晶化,同时保持整体结晶度。这种结构改性会略微降低离子电导率,但会增强界面电子和机械性能,抑制锂聚集并减轻界面突出。在这项工作中,我们展示了晶界结构如何控制锂的重新分布动力学和枝晶形成机制。我们还进一步提出,有针对性的晶界非晶化是一种有效的策略,可设计出坚固的固态电解质微观结构,从而提高电池的循环稳定性和安全性。