Park Sunho, Pettigrew Morgan F, Cha Yoon Jin, Kim In-Ho, Kim Minji, Banerjee Imon, Barnfather Isabel, Clemenceau Jean R, Jang Inyeop, Kim Hyunki, Kim Younghoon, Pai Rish K, Park Jeong Hwan, Samadder N Jewel, Song Kyo Young, Sung Ji-Youn, Cheong Jae-Ho, Kang Jeonghyun, Lee Sung Hak, Wang Sam C, Hwang Tae Hyun
Vanderbilt University Medical Center, Nashville, TN, USA.
Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
NPJ Digit Med. 2025 May 19;8(1):294. doi: 10.1038/s41746-025-01580-8.
Determining tumor microsatellite status has significant clinical value because tumors that are microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) respond well to immune checkpoint inhibitors (ICIs) and oftentimes not to chemotherapeutics. We propose MSI-SEER, a deep Gaussian process-based Bayesian model that analyzes H&E whole-slide images in weakly-supervised-learning to predict microsatellite status in gastric and colorectal cancers. We performed extensive validation using multiple large datasets comprised of patients from diverse racial backgrounds. MSI-SEER achieved state-of-the-art performance with MSI prediction by integrating uncertainty prediction. We achieved high accuracy for predicting ICI responsiveness by combining tumor MSI status with stroma-to-tumor ratio. Finally, MSI-SEER's tile-level predictions revealed novel insights into the role of spatial distribution of MSI-H regions in the tumor microenvironment and ICI response.
确定肿瘤微卫星状态具有重要的临床价值,因为微卫星高度不稳定(MSI-H)或错配修复缺陷(dMMR)的肿瘤对免疫检查点抑制剂(ICI)反应良好,而对化疗药物通常无反应。我们提出了MSI-SEER,这是一种基于深度高斯过程的贝叶斯模型,它在弱监督学习中分析苏木精和伊红(H&E)全切片图像,以预测胃癌和结直肠癌的微卫星状态。我们使用了多个由不同种族背景患者组成的大型数据集进行了广泛的验证。MSI-SEER通过整合不确定性预测,在MSI预测方面达到了目前的最佳性能。通过将肿瘤MSI状态与基质与肿瘤比率相结合,我们在预测ICI反应性方面实现了高精度。最后,MSI-SEER的图块级预测揭示了关于MSI-H区域在肿瘤微环境中的空间分布及其与ICI反应的作用的新见解。