Zenger Brian, Smith Timothy W, Hicks Stephanie, Ng Sherwin, Pavek Todd, Knutson Nels, Samson Pamela P, Zheng Jie, Berberet Caleb, Ibrahim El-Sayed H, Jani Vinay, Tabor James, Wilson Leslie D, Jordan Samuel D, Marut Luke C, Kumar Aryan, Manikandan Sneha, Javaheri Ali, Bergom Carmen, Schwarz Julie K, Boyle Patrick M, Hugo Geoffrey D, Cuculich Phillip S, Robinson Cliff, Zemlin Christian, Rentschler Stacey L
Department of Internal Medicine, Cardiovascular Division (B.Z., T.W.S., S.H., S.N., J.T., S.D.J., A.K., S.M., A.J., P.S.C., S.L.R.), Washington University School of Medicine, St. Louis, MO.
Center for Noninvasive Cardiac Radiotherapy (B.Z., T.W.S., S.H., S.N., N.K., P.P.S., J.T., S.D.J., L.M., A.K., S.M., A.J., C. Bergom, J.K.S., G.D.H., P.S.C., C.R., S.L.R.), Washington University School of Medicine, St. Louis, MO.
Circ Arrhythm Electrophysiol. 2025 Jun;18(6):e013684. doi: 10.1161/CIRCEP.124.013684. Epub 2025 May 20.
Stereotactic arrhythmia radiotherapy (STAR) has emerged as a potential therapy for treatment-refractory ventricular tachycardia (VT). However, the mechanisms underlying STAR efficacy, such as scar or other electromechanical changes, are still unclear. The goal of this study was to develop a translational porcine model of ischemic monomorphic VT treated with STAR to examine the physiological changes after a typical clinical STAR treatment.
We treated a previously validated porcine model of monomorphic VT after myocardial infarction with a clinically derived STAR protocol. A dose of 25 Gy was prescribed to the planning target volume and 35 Gy to the clinical target volume (regions of scar), while controls underwent a sham STAR treatment. All investigators in the study were blinded except the treating investigator. The primary study outcome was VT inducibility at 6 weeks post-STAR. Animals underwent pre- and post-STAR cardiac magnetic resonance imaging to quantify myocardial scar and function, as well as body surface mapping. Six weeks post-STAR, animals underwent a VT induction study, and tissue was harvested for optical mapping and histological analysis.
Six animals completed the study, which ended before finishing enrollment because all animals had inducible VT. We found a significantly longer local effective refractory period in the left ventricular apex and longer VT cycle lengths in STAR-treated animals compared with controls (<0.05). We found no difference in myocardial scar burden, mechanical function, or body surface recordings when comparing pre- and post-STAR.
Our data suggest a novel therapeutic mechanism of STAR driven by increasing the effective refractory period in locally treated areas, corresponding to increased tissue wavelength. Our results corroborate clinical case reports and anecdotal evidence that STAR increases VT cycle length. Importantly, these effects were not mediated by an increase in myocardial scar burden. However, our studies do not examine the long-term effects of STAR.
立体定向心律失常放疗(STAR)已成为治疗难治性室性心动过速(VT)的一种潜在疗法。然而,STAR疗效的潜在机制,如瘢痕或其他机电变化,仍不清楚。本研究的目的是建立一个经STAR治疗的缺血性单形性VT的转化猪模型,以研究典型临床STAR治疗后的生理变化。
我们采用临床推导的STAR方案治疗先前验证的心肌梗死后单形性VT猪模型。计划靶体积处方剂量为25 Gy,临床靶体积(瘢痕区域)处方剂量为35 Gy,而对照组接受假STAR治疗。除治疗研究者外,研究中的所有研究者均为盲法。主要研究结果是STAR治疗后6周的VT诱发性。动物在STAR治疗前后接受心脏磁共振成像,以量化心肌瘢痕和功能以及体表标测。STAR治疗后6周,动物接受VT诱发研究,并采集组织进行光学标测和组织学分析。
6只动物完成了研究,该研究在完成入组前结束,因为所有动物均有可诱发性VT。我们发现,与对照组相比,STAR治疗的动物左心室心尖局部有效不应期明显延长,VT周期长度更长(<0.05)。比较STAR治疗前后,我们发现心肌瘢痕负荷、机械功能或体表记录没有差异。
我们的数据表明,STAR的一种新的治疗机制是通过增加局部治疗区域的有效不应期来驱动的,这与组织波长增加相对应。我们的结果证实了临床病例报告和轶事证据,即STAR增加VT周期长度。重要的是,这些效应不是由心肌瘢痕负荷增加介导的。然而,我们的研究没有考察STAR的长期效应。