Maurits de Roo C, Klement W J Niels, Duijnstee Daniel R, Staykov Aleksandar, Browne Wesley R
Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands.
International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, 819-0395 Fukuoka, Japan.
Inorg Chem. 2025 Jun 2;64(21):10549-10557. doi: 10.1021/acs.inorgchem.5c01017. Epub 2025 May 20.
High-valent iron oxido species, central to many enzymatic and biomimetic catalyzed organic oxidative transformations, can be generated by direct electrochemical oxidation, circumventing high-energy O atom donor reagents. Electrochemical generation necessitates knowledge of the redox potentials involved, which is hindered by the lack of well-defined Fe(III)/Fe(IV) redox waves in the voltammetry of many iron-based catalysts. Hence, other approaches including chemical oxidation and bulk spectro(electro)chemical methods need to be taken. In the case of the well-studied oxidation catalyst, , where NPy is 1,1-bis(pyridin-2-yl)-,-bis(pyridin-2-ylmethyl)methanamine, estimates of the Fe(III/IV) redox potentials range from 0.4 to 1.3 V vs SCE. Here, we show that electrochemical surface-enhanced Raman scattering spectroscopy reveals "hidden" redox waves, and hence redox potentials, when coupled with cyclic voltammetry. Rapid spectral acquisition (>2 Hz) of surface-enhanced Raman spectra at electrochemically roughened gold electrodes enables real-time spectral acquisition during cyclic voltammetry. We show that the Fe(III)/Fe(IV) redox potential of is close to that determined earlier by chemical redox titrations (0.85 V vs SCE). Furthermore, comproportionation and adsorption processes are shown to impact the rates of electron transfer observed, which rationalizes the absence of a distinct Fe(III)/Fe(IV) redox wave in its cyclic voltammetry.
高价铁氧化物种是许多酶催化和仿生催化有机氧化转化的核心,可通过直接电化学氧化生成,避免了使用高能氧原子供体试剂。电化学生成需要了解所涉及的氧化还原电位,但许多铁基催化剂的伏安法中缺乏明确的Fe(III)/Fe(IV)氧化还原波,这阻碍了相关研究。因此,需要采用包括化学氧化和体相光谱(电化学)方法在内的其他方法。对于经过充分研究的氧化催化剂,其中NPy为1,1-双(吡啶-2-基)-,-双(吡啶-2-基甲基)甲胺,Fe(III/IV)氧化还原电位的估计值在相对于标准甘汞电极(SCE)为0.4至1.3 V的范围内。在此,我们表明,当与循环伏安法结合时,电化学表面增强拉曼散射光谱揭示了“隐藏”的氧化还原波,从而揭示了氧化还原电位。在电化学粗糙化的金电极上快速采集表面增强拉曼光谱(>2 Hz)能够在循环伏安法期间进行实时光谱采集。我们表明,的Fe(III)/Fe(IV)氧化还原电位接近早期通过化学氧化还原滴定法测定的值(相对于SCE为0.85 V)。此外,歧化和吸附过程被证明会影响观察到的电子转移速率,这解释了其循环伏安法中不存在明显的Fe(III)/Fe(IV)氧化还原波的原因。