Xiang Heng, Li Lingqi, Chien Yu-Chieh, Zheng Haofei, Gao Jing, Ang Kah-Wee
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.
ACS Appl Mater Interfaces. 2025 Jun 4;17(22):32575-32585. doi: 10.1021/acsami.4c21417. Epub 2025 May 20.
Ferroelectric materials, known for their nonvolatile and reversible polarization states, are emerging as promising candidates for innovative computing paradigms such as neuromorphic computing and logic-in-memory (LiM) architectures. Their polarization dynamics in response to external stimuli closely emulates biological synapses, a feature crucial for learning and adaptation in neural networks. Achieving multiple intermediate states between fully polarized states is critical for energy-efficient computation. However, the exploitation of switching properties for weight modulation in ferroelectric materials remain underexplored. In this study, we demonstrate improved intermediate and cumulative polarization levels in HfZrO (HZO) through phase engineering. Consequently, HZO-based synaptic ferroelectric field-effect transistors (FeFETs) achieve a wide range of synaptic weights (up to 8 bits) with remarkable linearity, resulting in high classification accuracies of 98% for MNIST and 88% for Fashion-MNIST in neuromorphic computing tasks. Additionally, we present reconfigurable in-memory NOR and NAND logic functions along with 3-bit logic state generation using a multigate FeFET, demonstrating the potential for LiM operations. This work underscores the successful cointegration of neuromorphic and LiM computing functionalities within a unified platform, addressing key challenges in developing efficient and versatile computing architectures. Our findings highlight the potential of HZO to enable next-generation computing systems that seamlessly integrate learning and logic capabilities.
铁电材料以其非易失性和可逆极化状态而闻名,正成为神经形态计算和内存逻辑(LiM)架构等创新计算范式的有前途的候选材料。它们对外部刺激的极化动力学紧密模拟生物突触,这一特性对于神经网络中的学习和适应至关重要。在完全极化状态之间实现多个中间状态对于节能计算至关重要。然而,铁电材料中用于权重调制的开关特性的开发仍未得到充分探索。在本研究中,我们通过相工程展示了HfZrO(HZO)中改进的中间极化和累积极化水平。因此,基于HZO的突触铁电场效应晶体管(FeFET)实现了范围广泛的突触权重(高达8位),具有显著的线性度,在神经形态计算任务中,MNIST的分类准确率高达98%,Fashion-MNIST的分类准确率高达88%。此外,我们展示了可重构的内存NOR和NAND逻辑功能,以及使用多栅极FeFET生成3位逻辑状态,证明了LiM操作的潜力。这项工作强调了在统一平台内成功实现神经形态和LiM计算功能的共集成,解决了开发高效通用计算架构中的关键挑战。我们的研究结果突出了HZO在实现无缝集成学习和逻辑能力的下一代计算系统方面的潜力。