Huo Jiali, Li Lingqi, Zheng Haofei, Gao Jing, Tun Thaw Tint Te, Xiang Heng, Ang Kah-Wee
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.
ACS Nano. 2024 Oct 15;18(41):28394-28405. doi: 10.1021/acsnano.4c11081. Epub 2024 Oct 3.
Spiking neural networks (SNNs) are attracting increasing interests for their ability to emulate biological processes, offering energy-efficient computation and event-driven processing. Currently, no devices are known to combine both neuronal and synaptic functions. This study presents an experimental demonstration of an ambipolar WSe n-type/p-type ferroelectric field-effect transistor (n/p-FeFET) integrated with ferroelectric HfZrO (HZO) to achieve both volatile and nonvolatile properties in a single device. The nonvolatile n-FeFET, driven by the stable ferroelectric properties of HZO, exhibits highly linear synaptic behavior. In contrast, the volatile p-FeFET, influenced by electron self-compensation in the ambipolar WSe, enables self-resetting leaky-integrate-and-fire neurons. Integrating neuronal and synaptic functions in the same device allows for compact neuromorphic computing applications. Additionally, simulations of SNNs using experimentally calibrated synaptic and neuronal models achieved a 93.8% accuracy in MNIST digit recognition. This innovative approach advances the development of SNNs with high biomimetic fidelity and reduced hardware costs.
脉冲神经网络(SNNs)因其能够模拟生物过程、提供节能计算和事件驱动处理能力而受到越来越多的关注。目前,尚不知有任何器件能同时兼具神经元和突触功能。本研究展示了一种双极性WSe n型/p型铁电场效应晶体管(n/p-FeFET)与铁电HfZrO(HZO)集成的实验演示,以在单个器件中实现易失性和非易失性特性。由HZO的稳定铁电特性驱动的非易失性n-FeFET表现出高度线性的突触行为。相比之下,受双极性WSe中电子自补偿影响的易失性p-FeFET实现了自复位泄漏积分发放神经元。在同一器件中集成神经元和突触功能可实现紧凑的神经形态计算应用。此外,使用经过实验校准的突触和神经元模型对SNNs进行的模拟在MNIST数字识别中实现了93.8%的准确率。这种创新方法推动了具有高仿生保真度和降低硬件成本的SNNs的发展。