Deegbey Mawuli, Sumner Ethan W, Vaissier Welborn Valerie
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States.
J Chem Inf Model. 2025 Jun 9;65(11):5289-5300. doi: 10.1021/acs.jcim.5c00442. Epub 2025 May 20.
Over the years, molecular dynamics (MD) simulations have been employed in the study of carbohydrates, with force fields such as CHARMM, AMBER/GLYCAM, and GROMOS. Although these force fields have achieved considerable success and played a pivotal role in our understanding of carbohydrate chemistry, growing interest has emerged in incorporating polarization effects to enhance the accuracy of simulations. In this perspective, we contemplate the advances that have been made in nonpolarizable and polarizable force fields to extract the key factors controlling accuracy in MD of carbohydrates. We find that the extreme hydrophilicity and conformational flexibility of carbohydrates pose challenges for most force fields. Overall, a force field suited for carbohydrates needs to include a water model developed consistently with the solute parameter sets, a soft van der Waals repulsion term at short distances, and polarization (whether implicit or explicit). We find that AMOEBA improves the prediction of hydration shell structure and dynamics, hydrogen bonding, and kinetics of diffusion, although it remains largely untested for conformational flexibility and glycosidic linkages. Nevertheless, AMOEBA's recent success in modeling monosaccharides without revisions of the potential energy functions or water model presents a promising avenue for future research. Such advances will provide deeper insights into the structure, dynamics, and interactions of these biologically and industrially relevant macromolecules.
多年来,分子动力学(MD)模拟已被用于碳水化合物的研究,采用了诸如CHARMM、AMBER/GLYCAM和GROMOS等力场。尽管这些力场已取得了相当大的成功,并在我们对碳水化合物化学的理解中发挥了关键作用,但人们越来越有兴趣纳入极化效应以提高模拟的准确性。从这个角度来看,我们思考了在非极化和极化力场方面取得的进展,以提取控制碳水化合物分子动力学模拟准确性的关键因素。我们发现,碳水化合物的极端亲水性和构象灵活性对大多数力场构成了挑战。总体而言,适用于碳水化合物的力场需要包括一个与溶质参数集一致开发的水模型、短距离处的软范德华排斥项以及极化(无论是隐式还是显式)。我们发现AMOEBA改善了对水化层结构和动力学、氢键以及扩散动力学的预测,尽管它在构象灵活性和糖苷键方面仍基本未经过测试。然而,AMOEBA最近在不修改势能函数或水模型的情况下对单糖进行建模的成功为未来研究提供了一条有前景的途径。这些进展将为深入了解这些在生物学和工业上相关的大分子的结构、动力学和相互作用提供更深刻的见解。