Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic.
CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic.
J Chem Inf Model. 2024 Sep 23;64(18):7122-7134. doi: 10.1021/acs.jcim.4c00981. Epub 2024 Sep 9.
Glycosaminoglycans (GAGs) are negatively charged polysaccharides found on cell surfaces, where they regulate transport pathways of foreign molecules toward the cell. The structural and functional diversity of GAGs is largely attributed to varied sulfation patterns along the polymer chains, which makes understanding their molecular recognition mechanisms crucial. Molecular dynamics (MD) simulations, thanks to their unmatched microscopic resolution, have the potential to be a reference tool for exploring the patterns responsible for biologically relevant interactions. However, the capability of molecular dynamics force fields used in biosimulations to accurately capture sulfation-specific interactions is not well established, partly due to the intrinsic properties of GAGs that pose challenges for most experimental techniques. In this work, we evaluate the performance of molecular dynamics force fields for sulfated GAGs by studying ion pairing of Ca to sulfated moieties─-methylsulfamate and methylsulfate─that resemble N- and O-sulfation found in GAGs, respectively. We tested available nonpolarizable (CHARMM36 and GLYCAM06) and explicitly polarizable (Drude and AMOEBA) force fields, and derived new implicitly polarizable models through charge scaling (prosECCo75 and GLYCAM-ECC75) that are consistent with our developed "charge-scaling" framework. The calcium-sulfamate/sulfate interaction free energy profiles obtained with the tested force fields were compared against reference ab initio molecular dynamics (AIMD) simulations, which serve as a robust alternative to experiments. AIMD simulations indicate that the preferential Ca binding mode to sulfated GAG groups is solvent-shared pairing. Only our scaled-charge models agree satisfactorily with the AIMD data, while all other force fields exhibit poorer agreement, sometimes even qualitatively. Surprisingly, even explicitly polarizable force fields display a notable disagreement with the AIMD data, likely attributed to difficulties in their optimization and possible inherent limitations in depicting high-charge-density ion interactions accurately. Finally, the underperforming force fields lead to unrealistic aggregation of sulfated saccharides, which qualitatively disagrees with our understanding of the soft glycocalyx environment. Our results highlight the importance of accurately treating electronic polarization in MD simulations of sulfated GAGs and caution against over-reliance on currently available models without thorough validation and optimization.
糖胺聚糖 (GAGs) 是带负电荷的多糖,存在于细胞表面,调节着外来分子向细胞内的运输途径。GAGs 的结构和功能多样性主要归因于聚合物链上不同的硫酸化模式,这使得理解其分子识别机制至关重要。由于具有无与伦比的微观分辨率,分子动力学 (MD) 模拟有可能成为探索负责生物相关相互作用的模式的参考工具。然而,生物模拟中使用的分子动力学力场准确捕捉硫酸化特异性相互作用的能力尚未得到很好的确立,部分原因是 GAGs 的固有特性给大多数实验技术带来了挑战。在这项工作中,我们通过研究 Ca 与硫酸化部分(甲基磺酸盐和甲基硫酸盐)的离子配对来评估用于硫酸化 GAGs 的分子动力学力场的性能,分别模拟 GAGs 中发现的 N-和 O-硫酸化。我们测试了现有的非极化 (CHARMM36 和 GLYCAM06) 和显式极化 (Drude 和 AMOEBA) 力场,并通过电荷缩放 (prosECCo75 和 GLYCAM-ECC75) 衍生出新的隐式极化模型,这些模型与我们开发的“电荷缩放”框架一致。用测试的力场得到的钙-磺酸盐/硫酸盐相互作用自由能曲线与参考从头算分子动力学 (AIMD) 模拟进行了比较,AIMD 模拟是实验的可靠替代方法。AIMD 模拟表明,Ca 与硫酸化 GAG 基团的优先结合模式是溶剂共享配对。只有我们的缩放电荷模型与 AIMD 数据吻合得令人满意,而所有其他力场的吻合度较差,有时甚至在定性上。令人惊讶的是,即使是显式极化力场也与 AIMD 数据存在明显差异,这可能归因于它们的优化困难和可能存在的内在局限性,无法准确描述高电荷密度离子相互作用。最后,表现不佳的力场导致硫酸化糖的不切实际的聚集,这在定性上与我们对软糖萼环境的理解不符。我们的结果强调了在硫酸化 GAGs 的 MD 模拟中准确处理电子极化的重要性,并警告不要在没有彻底验证和优化的情况下过度依赖当前可用的模型。