文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

与结直肠癌死亡率相关的致癌基因的鉴定以及肉桂共轭磁性纳米颗粒对其表达的影响。

Identification of oncogenes associated with colorectal cancer mortality and the effect of cinnamon-conjugated magnetic nanoparticles on their expression.

作者信息

Ahmadzadeh Chaleshtori Mohammad Amin, Salehzadeh Ali, Peymani Maryam

机构信息

Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.

Department of Biology, ShK. C., Islamic Azad University, Shahrekord, Iran.

出版信息

Sci Rep. 2025 May 20;15(1):17467. doi: 10.1038/s41598-025-02189-3.


DOI:10.1038/s41598-025-02189-3
PMID:40394097
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12092824/
Abstract

Finding the molecular targets involved in the severity and drug resistance of Colorectal cancer (CRC) and applying targeted treatments against them is a promising approach. In this study, some candidate oncogenes related to disease severity and mortality were identified by extracting bioinformatics data, and the effect of FeO@Glu-Cinnamon NPs on the survival of CRC cells (SW480) and the expression of these oncogenes was investigated. The NPs were characterized by FT-IR, XRD, DLS and zeta potential measurement, TEM and SEM imaging, EDS-mapping and VSM analysis. Cytotoxicity of the NPs was evaluated by the MTT assay and a flow cytometry analysis was done to investigate cell apoptosis/necrosis levels and cell cycle analysis of cancer cells. The FeO@Glu-Cinnamon NPs with spherical morphology were correctly synthesized, containing no elemental impurities, with a size range of 26.8-60.2 nm, DLS of 213 nm, zeta potential of -15.4mV and maximum magnetization level of 20.33emu/g. Treatment of cancer cells with the NPs elevated primary and late apoptosis and cell necrosis levels to 20.85, 16.83 and 9.56% and treated cells were mainly arrested at the S and G2/M phases. The expression level of the oncogenes associated with mortality, SNAI1, THBS2 and INHBA reduced to 0.74, 0.66 and 0.7 folds, respectively. The magnetic properties of FeO NPs enable their potential use in targeted drug delivery, allowing for site-specific accumulation within tumors. This could minimize systemic toxicity while enhancing treatment efficacy.

摘要

寻找参与结直肠癌(CRC)严重程度和耐药性的分子靶点并针对这些靶点进行靶向治疗是一种很有前景的方法。在本研究中,通过提取生物信息学数据确定了一些与疾病严重程度和死亡率相关的候选癌基因,并研究了FeO@Glu-肉桂纳米颗粒对CRC细胞(SW480)存活以及这些癌基因表达的影响。通过傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、动态光散射(DLS)和zeta电位测量、透射电子显微镜(TEM)和扫描电子显微镜(SEM)成像、能谱映射(EDS-mapping)和振动样品磁强计(VSM)分析对纳米颗粒进行了表征。通过MTT法评估纳米颗粒的细胞毒性,并进行流式细胞术分析以研究癌细胞的凋亡/坏死水平和细胞周期分析。成功合成了具有球形形态的FeO@Glu-肉桂纳米颗粒,不含元素杂质,尺寸范围为26.8-60.2nm,DLS为213nm,zeta电位为-15.4mV,最大磁化强度为20.33emu/g。用纳米颗粒处理癌细胞后,早期和晚期凋亡以及细胞坏死水平分别提高到20.85%、16.83%和9.56%,处理后的细胞主要停滞在S期和G2/M期。与死亡率相关的癌基因SNAI1、THBS2和INHBA的表达水平分别降至0.74、0.66和0.7倍。FeO纳米颗粒的磁性使其有可能用于靶向药物递送,从而在肿瘤内实现位点特异性积累。这可以在提高治疗效果的同时将全身毒性降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/a741ba306e2c/41598_2025_2189_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/60b2a190291e/41598_2025_2189_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/9bde987f0b58/41598_2025_2189_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/0b5d5e2499e7/41598_2025_2189_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/d5788a849dbe/41598_2025_2189_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/803d77a277df/41598_2025_2189_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/c596341d0c69/41598_2025_2189_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/00991658271e/41598_2025_2189_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/8aa292d7ae94/41598_2025_2189_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/9aeae9818c75/41598_2025_2189_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/c5a347e489c7/41598_2025_2189_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/ab4fa3fde5d8/41598_2025_2189_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/46183abe1a47/41598_2025_2189_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/391f3840f188/41598_2025_2189_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/b167d3f12e81/41598_2025_2189_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/8fe799afb493/41598_2025_2189_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/a741ba306e2c/41598_2025_2189_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/60b2a190291e/41598_2025_2189_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/9bde987f0b58/41598_2025_2189_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/0b5d5e2499e7/41598_2025_2189_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/d5788a849dbe/41598_2025_2189_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/803d77a277df/41598_2025_2189_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/c596341d0c69/41598_2025_2189_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/00991658271e/41598_2025_2189_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/8aa292d7ae94/41598_2025_2189_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/9aeae9818c75/41598_2025_2189_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/c5a347e489c7/41598_2025_2189_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/ab4fa3fde5d8/41598_2025_2189_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/46183abe1a47/41598_2025_2189_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/391f3840f188/41598_2025_2189_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/b167d3f12e81/41598_2025_2189_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/8fe799afb493/41598_2025_2189_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/12092824/a741ba306e2c/41598_2025_2189_Fig16_HTML.jpg

相似文献

[1]
Identification of oncogenes associated with colorectal cancer mortality and the effect of cinnamon-conjugated magnetic nanoparticles on their expression.

Sci Rep. 2025-5-20

[2]
Iron oxide nanoparticles coated with Glucose and conjugated with Safranal (FeO@Glu-Safranal NPs) inducing apoptosis in liver cancer cell line (HepG2).

BMC Chem. 2024-2-15

[3]
Exploring the Therapeutic Potential of FeO@Glu-Oleuropein Nanoparticles in Targeting KRAS Pathway-Regulating lncRNAs in Colorectal Cancer Cells.

Biol Trace Elem Res. 2024-7

[4]
Antibacterial potential and cytotoxic activity of iron oxide nanoparticles conjugated with thymol (FeO@Glu-Thymol) on breast cancer cells and investigating the expression of BAX, CASP8, and BCL-2 genes.

Biometals. 2023-12

[5]
Evaluation the cytotoxic effect of FeO@Glu-Gingerol on lung adenocarcinoma cell line (A549) with biological mechanisms.

Heliyon. 2023-12-10

[6]
Rapamycin loaded magnetic Fe3O4/carboxymethylchitosan nanoparticles as tumor-targeted drug delivery system: Synthesis and in vitro characterization.

Colloids Surf B Biointerfaces. 2015-4-1

[7]
Effect of chitosan nanoparticles conjugated with the cell free supernatant of Bifidobacterium bifidum on the expression of genes related to colorectal cancer in colon adenocarcinoma (Caco-2) cell line.

BMC Gastroenterol. 2025-5-21

[8]
Green Synthesis of FeO Nanoparticles Stabilized by a Fruit Peel Extract for Hyperthermia and Anticancer Activities.

Int J Nanomedicine. 2021

[9]
Targeted colorectal cancer treatment: In vitro anti-cancer effects of carnosine nanoparticles supported by agar and magnetic iron oxide.

Eur J Pharm Biopharm. 2024-10

[10]
A novel cobalt oxide nanoparticle conjugated with ellagic acid arrests the cell cycle in human liver cancer cell line.

Sci Rep. 2025-1-13

引用本文的文献

[1]
Integrative single-cell transcriptomic analysis deciphers heterogeneous characteristics of gastrointestinal tract cancer.

Clin Transl Med. 2025-8

本文引用的文献

[1]
Mitochondrial Aconitase and Its Contribution to the Pathogenesis of Neurodegenerative Diseases.

Int J Mol Sci. 2024-9-15

[2]
Coprisin/Compound K Conjugated Gold Nanoparticles Induced Cell Death through Apoptosis and Ferroptosis Pathway in Adenocarcinoma Gastric Cells.

ACS Omega. 2024-6-4

[3]
Iron oxide nanoparticles coated with Glucose and conjugated with Safranal (FeO@Glu-Safranal NPs) inducing apoptosis in liver cancer cell line (HepG2).

BMC Chem. 2024-2-15

[4]
Intestinal epithelial SNAI1 promotes the occurrence of colorectal cancer by enhancing EMT and Wnt/β-catenin signaling.

Med Oncol. 2023-12-27

[5]
Exploring the Therapeutic Potential of FeO@Glu-Oleuropein Nanoparticles in Targeting KRAS Pathway-Regulating lncRNAs in Colorectal Cancer Cells.

Biol Trace Elem Res. 2024-7

[6]
Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications.

Small. 2024-2

[7]
Cinnamaldehyde-Rich Cinnamon Extract Induces Cell Death in Colon Cancer Cell Lines HCT 116 and HT-29.

Int J Mol Sci. 2023-5-3

[8]
8-paradol from ginger exacerbates PINK1/Parkin mediated mitophagy to induce apoptosis in human gastric adenocarcinoma.

Pharmacol Res. 2023-1

[9]
Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications.

J Nanobiotechnology. 2022-6-27

[10]
Targeted therapies for cancer.

BMC Med. 2022-3-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索