Rothgangl Tanja, Tálas András, Ioannidi Eleonora I, Weber Yanik, Böck Desirée, Matsushita Mai, Villiger Elina Andrea, Schmidheini Lukas, Moon Woohyun J, Lin Paulo J C, Fan Steven H Y, Marquart Kim F, Schwerdel Cornelia, Rimann Nicole, Faccin Erica, Villiger Lukas, Muramatsu Hiromi, Vadovics Máté, Cremonesi Alessio, Kulcsár Péter István, Thöny Beat, Kopf Manfred, Häberle Johannes, Pardi Norbert, Tam Ying K, Schwank Gerald
Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
Nat Biomed Eng. 2025 May 20. doi: 10.1038/s41551-025-01399-4.
Prime editing is a versatile genome editing technology that circumvents the need for DNA double-strand break formation and homology-directed repair, making it particularly suitable for in vivo correction of pathogenic mutations. Here we developed liver-specific prime editing approaches with temporally restricted prime editor (PE) expression. We first established a dual-delivery approach where the prime editor guide RNA is continuously expressed from adeno-associated viral vectors and only the PE is transiently delivered as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP). This strategy achieved 26.2% editing with PEmax and 47.4% editing with PE7 at the Dnmt1 locus using a single 2 mg kg dose of mRNA-LNP. When targeting the pathogenic Pah mutation in a phenylketonuria mouse model, gene correction rates reached 4.3% with PEmax and 20.7% with PE7 after three doses of 2 mg kg mRNA-LNP, effectively reducing blood L-phenylalanine levels from over 1,500 µmol l to below the therapeutic threshold of 360 µmol l. Encouraged by the high efficiency of PE7, we next explored a simplified approach where PE7 mRNA was co-delivered with synthetic prime editor guide RNAs encapsulated in LNP. This strategy yielded 35.9% editing after two doses of RNA-LNP at the Dnmt1 locus and 8.0% editing after three doses of RNA-LNP at the Pah locus, again reducing L-phenylalanine levels below 360 µmol l. These findings highlight the therapeutic potential of mRNA-LNP-based prime editing for treating phenylketonuria and other genetic liver diseases, offering a scalable and efficient platform for future clinical translation.
碱基编辑是一种多功能的基因组编辑技术,它无需形成DNA双链断裂和同源定向修复,这使得它特别适合于在体内纠正致病突变。在此,我们开发了具有时间限制的碱基编辑器(PE)表达的肝脏特异性碱基编辑方法。我们首先建立了一种双递送方法,其中碱基编辑器引导RNA从腺相关病毒载体持续表达,而只有PE作为封装在脂质纳米颗粒(LNP)中的核苷修饰mRNA被瞬时递送。使用2mg/kg单剂量的mRNA-LNP,该策略在Dnmt1位点实现了PEmax编辑效率为26.2%,PE7编辑效率为47.4%。在苯丙酮尿症小鼠模型中靶向致病的Pah突变时,在给予三剂2mg/kg mRNA-LNP后,PEmax的基因校正率达到4.3%,PE7的基因校正率达到20.7%,有效地将血液L-苯丙氨酸水平从超过1500µmol/l降低到360µmol/l的治疗阈值以下。受PE7高效率的鼓舞,我们接下来探索了一种简化方法,即PE7 mRNA与封装在LNP中的合成碱基编辑器引导RNA共同递送。该策略在Dnmt1位点给予两剂RNA-LNP后产生了35.9%的编辑效率,在Pah位点给予三剂RNA-LNP后产生了8.0%的编辑效率,同样将L-苯丙氨酸水平降低到360µmol/l以下。这些发现突出了基于mRNA-LNP的碱基编辑在治疗苯丙酮尿症和其他遗传性肝脏疾病方面的治疗潜力,为未来的临床转化提供了一个可扩展且高效的平台。
Nat Biomed Eng. 2025-5-20
Sci Transl Med. 2022-3-16
Adv Drug Deliv Rev. 2024-8
Animals (Basel). 2025-8-6
Nat Biotechnol. 2025-4
N Engl J Med. 2023-9-28
J Inherit Metab Dis. 2024-1