Suppr超能文献

恶唑霉素在工程化的龙胜链霉菌中的优化表达及其活性评价。

Optimized expression of oxazolomycins in engineered Streptomyces longshengensis and their activity evaluation.

作者信息

Sun Huiying, Liu Xiang, Li Junyue, Xu Yang, Li Yue, Tian Yuqing, Tan Huarong, Zhang Jihui

机构信息

State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Microb Cell Fact. 2025 May 20;24(1):114. doi: 10.1186/s12934-025-02726-9.

Abstract

BACKGROUND

To cope with the growing number of severe diseases and intractable pathogens, drug innovation in both chemical structures and pharmacological efficiency has become an imperative global mission. Oxazolomycins are a unique family of polyketide-polypeptide antibiotics from Streptomyces with diverse functional groups in their structures, conferring them multifarious activities. But further development into clinical applications has been hindered for decades for many reasons. Among them, the yield improvement is a critical basis for activity evaluation and drug-like property optimization. This study aims to enhance the production of oxazolomycins in Streptomyces longshengensis through metabolic engineering and evaluate their bioactivity against clinically relevant pathogens.

RESULTS

Co-transcriptional analyses suggested that two operons (the transcriptional unit from gene oxaG to oxaB, and that from gene oxaH to oxaQ) could be included in the oxazolomycin biosynthetic gene cluster (oxa BGC) of S. longshengensis. So a strategy was designed to replace the native promoter regions between oxaG and oxaH with constitutive promoters P and P following functional module evaluation. In the resultant strain (SL), the production of oxazolomycin component Toxa5 was increased to 4-fold of that in the wild-type strain. Accordingly, the transcription of all related genes in oxa was clearly promoted. SL was then subjected to sublethal dose of gentamicin to induce mutagenesis for optimizing the genetic background, generating a resistant mutant SL. With the introduction of transporter genes (ozmS and oxaA) into SL, 175 mg/L of Toxa5 was achieved, representing the highest yield in shake-flask fermentation to the best of our knowledge. Finally, the purified Toxa5 showed significant inhibition on the growth of clinically important Gram-negative pathogenic bacterium, Pseudomonas aeruginosa, and the biofilm formation of Bacillus subtilis. Intriguingly, an unprecedented antioxidant activity was also demonstrated.

CONCLUSIONS

An oxazolomycin high-producing system of S. longshengensis was established by employing genetic engineering strategies to facilitate the bioactivity exploitation. Oxazolomycin Toxa5 showed interesting inhibitory effects against multiple Gram-negative and -positive pathogens as well as antioxidant capacity, indicating its great potential in clinical applications. The findings provide an efficient strategy for the overproduction and activity evaluation of oxazolomycins.

摘要

背景

为应对日益增多的严重疾病和难治性病原体,在化学结构和药理效能方面进行药物创新已成为一项势在必行的全球使命。恶唑霉素是一类独特的聚酮 - 多肽抗生素,来源于链霉菌属,其结构中具有多样的官能团,赋予它们多种活性。但由于多种原因,其进一步发展到临床应用已受阻数十年。其中,产量提高是活性评估和类药性质优化的关键基础。本研究旨在通过代谢工程提高长生素链霉菌中恶唑霉素的产量,并评估其对临床相关病原体的生物活性。

结果

共转录分析表明,长生素链霉菌的恶唑霉素生物合成基因簇(oxa BGC)中可能包含两个操纵子(从基因oxaG到oxaB的转录单元,以及从基因oxaH到oxaQ的转录单元)。因此,在功能模块评估后,设计了一种策略,用组成型启动子P和P替换oxaG和oxaH之间的天然启动子区域。在所得菌株(SL)中,恶唑霉素组分Toxa5的产量提高到野生型菌株的4倍。相应地,oxa中所有相关基因的转录明显得到促进。然后对SL施加亚致死剂量的庆大霉素以诱导诱变来优化遗传背景,产生抗性突变体SL。通过将转运蛋白基因(ozmS和oxaA)引入SL,获得了175mg/L的Toxa5,据我们所知,这代表了摇瓶发酵中的最高产量。最后,纯化的Toxa5对临床重要的革兰氏阴性病原菌铜绿假单胞菌的生长以及枯草芽孢杆菌的生物膜形成显示出显著抑制作用。有趣的是,还展示了前所未有的抗氧化活性。

结论

通过采用基因工程策略建立了长生素链霉菌的恶唑霉素高产体系,以促进生物活性的开发。恶唑霉素Toxa5对多种革兰氏阴性和阳性病原体显示出有趣的抑制作用以及抗氧化能力,表明其在临床应用中具有巨大潜力。这些发现为恶唑霉素的过量生产和活性评估提供了一种有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51ee/12090451/59715e0a1b69/12934_2025_2726_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验