Cull William J, Ramasse Quentin M, Biskupek Johannes, Rance Graham A, Cardillo-Zallo Ian, Weare Benjamin L, Fay Michael W, Whitney R Roy, Scammell Lyndsey R, Fernandes Jesum Alves, Kaiser Ute, Patanè Amalia, Khlobystov Andrei N
School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK.
SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury, WA4 4AD, UK.
Adv Mater. 2025 Aug;37(32):e2501821. doi: 10.1002/adma.202501821. Epub 2025 May 21.
Manipulating semiconductor properties without altering their chemical composition holds promise for electronic and optical materials. However, linking atomic positions in nanomaterials to their functional properties is challenging due to their polydispersity. This study utilizes nano test tubes to uncover distinct phases of selenium, an elemental semiconductor, demonstrating a remarkable structural plasticity between 0.4 and 3.0 nm. These structures are correlated with their electronic bandgaps, ranging from 2.2 to 2.5 eV, using ultra-low-loss electron energy loss spectroscopy and aberration-corrected scanning transmission electron microscopy for individual nanowires in boron nitride nanotubes (BNNT). Notably, the variation in bandgaps diverges from that of bulk selenium and is non-monotonic on the host-nanotube diameter, indicating that conformational distortions in selenium chains begin counteracting quantum confinement effects at sub-nm scales. A 1D phase diagram predicting selenium's atomic structure based on nanotube diameter, regardless of the chemistry of the host nanotube is developed, which can be BNNT or carbon nanotubes. Phase changes in selenium nanowires are imaged in real-time by transmission electron microscopy using BNNT as a test tube with an adjustable diameter. These nanoscale findings pave the way for the development of advanced miniature tuneable and flexible electronic components, including transistors, optical sensors, and photovoltaics.
在不改变半导体化学成分的情况下操纵其性质,这对电子和光学材料来说颇具前景。然而,由于纳米材料的多分散性,将其原子位置与其功能性质联系起来具有挑战性。本研究利用纳米测试管揭示了元素半导体硒的不同相,证明了其在0.4至3.0纳米之间具有显著的结构可塑性。使用超低损耗电子能量损失谱和像差校正扫描透射电子显微镜对氮化硼纳米管(BNNT)中的单个纳米线进行研究,将这些结构与其2.2至2.5电子伏特的电子带隙相关联。值得注意的是,带隙的变化与块状硒不同,并且在主体纳米管直径上是非单调的,这表明硒链中的构象畸变在亚纳米尺度上开始抵消量子限制效应。开发了一种一维相图,该相图可根据纳米管直径预测硒的原子结构,而无需考虑主体纳米管的化学性质,主体纳米管可以是BNNT或碳纳米管。通过使用直径可调的BNNT作为测试管,利用透射电子显微镜实时成像硒纳米线中的相变。这些纳米尺度的发现为包括晶体管、光学传感器和光伏器件在内的先进微型可调谐和柔性电子元件的开发铺平了道路。