Martí-Sánchez Sara, Botifoll Marc, Oksenberg Eitan, Koch Christian, Borja Carla, Spadaro Maria Chiara, Di Giulio Valerio, Ramasse Quentin, García de Abajo F Javier, Joselevich Ernesto, Arbiol Jordi
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain.
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel.
Nat Commun. 2022 Jul 14;13(1):4089. doi: 10.1038/s41467-022-31778-3.
Strain relaxation mechanisms during epitaxial growth of core-shell nanostructures play a key role in determining their morphologies, crystal structure and properties. To unveil those mechanisms, we perform atomic-scale aberration-corrected scanning transmission electron microscopy studies on planar core-shell ZnSe@ZnTe nanowires on α-AlO substrates. The core morphology affects the shell structure involving plane bending and the formation of low-angle polar boundaries. The origin of this phenomenon and its consequences on the electronic band structure are discussed. We further use monochromated valence electron energy-loss spectroscopy to obtain spatially resolved band-gap maps of the heterostructure with sub-nanometer spatial resolution. A decrease in band-gap energy at highly strained core-shell interfacial regions is found, along with a switch from direct to indirect band-gap. These findings represent an advance in the sub-nanometer-scale understanding of the interplay between structure and electronic properties associated with highly mismatched semiconductor heterostructures, especially with those related to the planar growth of heterostructured nanowire networks.
核壳纳米结构外延生长过程中的应变弛豫机制在决定其形态、晶体结构和性质方面起着关键作用。为了揭示这些机制,我们对α-AlO衬底上的平面核壳ZnSe@ZnTe纳米线进行了原子尺度的像差校正扫描透射电子显微镜研究。核的形态影响壳结构,包括平面弯曲和低角度极性边界的形成。讨论了这一现象的起源及其对电子能带结构的影响。我们进一步使用单色化价电子能量损失谱以亚纳米空间分辨率获得异质结构的空间分辨带隙图。发现在高度应变的核壳界面区域带隙能量降低,同时从直接带隙转变为间接带隙。这些发现代表了在亚纳米尺度上对与高度失配的半导体异质结构相关的结构和电子性质之间相互作用的理解取得了进展,特别是与异质结构纳米线网络的平面生长相关的那些。