Suppr超能文献

通过近红外光谱血管内超声和光学相干断层扫描结合组织学检查基于机器学习的自动冠状动脉斑块特征分析的性能。

Examination of the performance of machine learning-based automated coronary plaque characterization by near-infrared spectroscopy-intravascular ultrasound and optical coherence tomography with histology.

作者信息

Bajaj Retesh, Parasa Ramya, Broersen Alexander, Johnson Thomas, Garg Mohil, Prati Francesco, Çap Murat, Lecaros Yap Nathan Angelo, Karaduman Medeni, Busk Carol Ann Glorioso Rexen, Grainger Stephanie, White Steven, Mathur Anthony, García-García Hector M, Dijkstra Jouke, Torii Ryo, Baumbach Andreas, Precht Helle, Bourantas Christos V

机构信息

Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK.

Centre for Cardiovascular Medicine and Device Innovation, William Harvey Research Institute, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.

出版信息

Eur Heart J Digit Health. 2025 Mar 4;6(3):359-371. doi: 10.1093/ehjdh/ztaf009. eCollection 2025 May.

Abstract

AIMS

Near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS) and optical coherence tomography (OCT) can assess coronary plaque pathology but are limited by time-consuming and expertise-driven image analysis. Recently introduced machine learning (ML)-classifiers have expedited image processing, but their performance in assessing plaque pathology against histological standards remains unclear. The aim of this study is to assess the performance of NIRS-IVUS-ML-based and OCT-ML-based plaque characterization against a histological standard.

METHODS AND RESULTS

Matched histological and NIRS-IVUS/OCT frames from human cadaveric hearts were manually annotated and fibrotic (FT), calcific (Ca), and necrotic core (NC) regions of interest (ROIs) were identified. Near-infrared spectroscopy-intravascular ultrasound and OCT frames were processed by their respective ML classifiers to segment and characterize plaque components. The histologically defined ROIs were overlaid onto corresponding NIRS-IVUS/OCT frames and the ML classifier estimations were compared with histology. In total, 131 pairs of NIRS-IVUS/histology and 184 pairs of OCT/histology were included. The agreement of NIRS-IVUS-ML with histology [concordance correlation coefficient (CCC) 0.81 and 0.88] was superior to OCT-ML (CCC 0.64 and 0.73) for the plaque area and burden. Plaque compositional analysis showed a substantial agreement of the NIRS-IVUS-ML with histology for FT, Ca, and NC ROIs (CCC: 0.73, 0.75, and 0.66, respectively) while the agreement of the OCT-ML with histology was 0.42, 0.62, and 0.13, respectively. The overall accuracy of NIRS-IVUS-ML and OCT-ML for characterizing atheroma types was 83% and 72%, respectively.

CONCLUSION

NIRS-IVUS-ML plaque compositional analysis has a good performance in assessing plaque components while OCT-ML performs well for the FT, moderately for the Ca, and has weak performance in detecting NC tissue. This may be attributable to the limitations of standalone intravascular imaging and to the fact that the OCT-ML classifier was trained on human experts rather than histological standards.

摘要

目的

近红外光谱血管内超声(NIRS-IVUS)和光学相干断层扫描(OCT)可评估冠状动脉斑块病理,但受耗时且需专业知识驱动的图像分析限制。最近引入的机器学习(ML)分类器加快了图像处理速度,但其在根据组织学标准评估斑块病理方面的性能仍不明确。本研究旨在根据组织学标准评估基于NIRS-IVUS-ML和基于OCT-ML的斑块特征分析的性能。

方法与结果

对来自人类尸体心脏的匹配组织学和NIRS-IVUS/OCT图像帧进行手动标注,识别出纤维化(FT)、钙化(Ca)和坏死核心(NC)感兴趣区域(ROI)。近红外光谱血管内超声和OCT图像帧由各自的ML分类器进行处理,以分割和表征斑块成分。将组织学定义的ROI覆盖到相应的NIRS-IVUS/OCT图像帧上,并将ML分类器的估计结果与组织学结果进行比较。总共纳入了131对NIRS-IVUS/组织学和184对OCT/组织学。对于斑块面积和负荷,NIRS-IVUS-ML与组织学的一致性[一致性相关系数(CCC)为0.81和0.88]优于OCT-ML(CCC为0.64和0.73)。斑块成分分析显示,NIRS-IVUS-ML与FT、Ca和NC ROI的组织学结果有实质性一致性(CCC分别为0.73、0.75和0.66),而OCT-ML与组织学的一致性分别为0.42、0.62和0.13。NIRS-IVUS-ML和OCT-ML用于表征动脉粥样硬化类型的总体准确率分别为83%和72%。

结论

NIRS-IVUS-ML斑块成分分析在评估斑块成分方面表现良好,而OCT-ML在FT方面表现良好,在Ca方面表现中等,在检测NC组织方面表现较弱。这可能归因于独立血管内成像的局限性以及OCT-ML分类器是根据人类专家而非组织学标准进行训练这一事实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec56/12088723/122be3794f72/ztaf009_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验