Suppr超能文献

用于预测开始高效抗逆转录病毒治疗6个月后HIV感染者患高脂血症风险的机器学习算法。

Machine learning algorithms to predict the risk of hyperlipidemia in people with HIV after starting HAART for 6 months.

作者信息

Ding Yi, Li Jialu, Gao Chengyu, Xing Lulu, Sun Rui, Guo Yifan, Lv Wenhao, Fu Jiantao, Zhao Yining, Li Qinlan, Xiao Jiang, Zhang Fujie

机构信息

Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, China.

出版信息

AIDS. 2025 Sep 1;39(11):1536-1544. doi: 10.1097/QAD.0000000000004244. Epub 2025 May 21.

Abstract

OBJECTIVE

The purpose of this study was to use machine learning models to predict the risk of hyperlipidemia in people with HIV (PWH) for 6 months after starting HAART, to improve early intervention efforts and prevent further progression to cardiovascular and cerebrovascular diseases.

METHODS

This study enrolled HAART-naive individuals who visited the clinic at Beijing Ditan Hospital between January 2015 and January 2023. All clinical features were extracted from the electronic medical records. A classification prediction model was established based on various machine learning algorithms, including Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM), to predict the risk of hyperlipidemia based on accuracy, positive-predictive value, negative-predictive value, sensitivity, and specificity. Receiver operating characteristic (ROC) curve, precision-recall curve, and decision curve analyses were used to visually evaluate the model.

RESULTS

A total of 2479 participants (median age, 33 years) were included, of which 2380 (96.01%) were male and 99 (3.99%) were female. The LightGBM model performed the best among all the models in both the training and testing sets. This model performed well in the decision curve analysis (DCA), and baseline high-density lipoprotein cholesterol (HDL-C), baseline triglycerides, baseline viral load, age, albumin, monocyte count, baseline CD4 + cell count, uric acid level, lymphocyte count, and sex were the top 10 predictive risk factors for hyperlipidemia in PWH who started HAART treatment for 6 months, based on SHAP analysis.

CONCLUSION

This study demonstrated that the LightGBM model can effectively predict the risk of hyperlipidemia in PWH after starting HAART treatment for 6 months and reminded physicians closely to monitor serum lipid levels or the timely addition of lipid-lowering drugs, which helped prevent the occurrence of cardiovascular diseases among PWH.

摘要

目的

本研究旨在使用机器学习模型预测开始高效抗逆转录病毒治疗(HAART)后6个月内HIV感染者(PWH)患高脂血症的风险,以加强早期干预措施,预防心血管和脑血管疾病的进一步发展。

方法

本研究纳入了2015年1月至2023年1月期间在北京地坛医院门诊就诊的未接受过HAART治疗的个体。所有临床特征均从电子病历中提取。基于随机森林(RF)、极端梯度提升(XGBoost)和轻量级梯度提升机(LightGBM)等多种机器学习算法建立分类预测模型,根据准确率、阳性预测值、阴性预测值、敏感性和特异性来预测高脂血症风险。采用受试者工作特征(ROC)曲线、精确召回率曲线和决策曲线分析对模型进行可视化评估。

结果

共纳入2479名参与者(中位年龄33岁),其中2380名(96.01%)为男性,99名(3.99%)为女性。在训练集和测试集中,LightGBM模型在所有模型中表现最佳。该模型在决策曲线分析(DCA)中表现良好,根据SHAP分析,基线高密度脂蛋白胆固醇(HDL-C)、基线甘油三酯、基线病毒载量、年龄、白蛋白、单核细胞计数、基线CD4 +细胞计数、尿酸水平、淋巴细胞计数和性别是开始HAART治疗6个月的PWH患高脂血症的前10个预测风险因素。

结论

本研究表明,LightGBM模型可以有效预测开始HAART治疗6个月后的PWH患高脂血症的风险,并提醒医生密切监测血脂水平或及时添加降脂药物,这有助于预防PWH心血管疾病的发生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b95/12337911/46a8d5417e27/aids-39-1536-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验