Suppr超能文献

原位负载镍铁合金的多级生物碳结构上的化学发酵造孔用于高效析氧反应电催化

Chemical Fermentation PoreCreation on Multilevel Bio-Carbon Structure with In Situ Ni-Fe Alloy Loading for Superior Oxygen Evolution Reaction Electrocatalysis.

作者信息

Kang Qiaoling, Su Mengfei, Luo Yana, Wang Ting, Gao Feng, Lu Qingyi

机构信息

State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Coordination Chemistry Institute, Nanjing University, Nanjing, 210023, People's Republic of China.

College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China.

出版信息

Nanomicro Lett. 2025 May 21;17(1):269. doi: 10.1007/s40820-025-01777-2.

Abstract

In the quest for high-efficiency and cost-effective catalysts for the oxygen evolution reaction (OER), a novel biomass-driven strategy is developed to fabricate a unique one-dimensional rod-arrays@two-dimensional interlaced-sheets (C) network. A groundbreaking chemical fermentation (CF) pore-generation mechanism, proposed for the first time for creating nanopores within carbon structures, is based on the optimal balance between gasification and solidification. This mechanism not only results in a distinctive C multilevel network with nanoscale, intersecting and freely flowing channels but also introduces a novel concept for in situ, extensive and hierarchical pore formation. The unique architecture, combined with the homogeneous dispersion of Ni-Fe nanoparticles, facilitates easy electrolyte penetration and provides abundant active sites for the anchoring and dispersion of reactive molecules or ions. Consequently, the Ni-Fe@C porous network demonstrates an exceptional OER electrocatalytic performance, achieving a record-low overpotential of 165 mV at 10 mA cm and maintaining long-term stability for over 90 h. Theoretical calculations reveal that the porous structure markedly strengthens the interaction between alloy nanoparticles and the carbon matrix, thereby significantly boosting their electrocatalytic activity and stability. These findings unequivocally validate the CF pore-generation mechanism as a powerful and innovative strategy for designing highly efficient functional nanostructures.

摘要

在寻求用于析氧反应(OER)的高效且具有成本效益的催化剂过程中,开发了一种新型的生物质驱动策略,以制备独特的一维棒阵列@二维交错片(C)网络。首次提出了一种开创性的化学发酵(CF)造孔机制,用于在碳结构中创建纳米孔,该机制基于气化和固化之间的最佳平衡。这种机制不仅产生了具有纳米级、交叉且自由流动通道的独特C多级网络,还引入了一种原位、广泛且分层成孔的新概念。独特的结构,结合Ni-Fe纳米颗粒的均匀分散,便于电解质轻松渗透,并为反应性分子或离子的锚定和分散提供了丰富的活性位点。因此,Ni-Fe@C多孔网络表现出优异的OER电催化性能,在10 mA cm时实现了创纪录的165 mV低过电位,并保持了超过90小时的长期稳定性。理论计算表明,多孔结构显著增强了合金纳米颗粒与碳基体之间的相互作用,从而显著提高了它们的电催化活性和稳定性。这些发现明确证实了CF造孔机制是设计高效功能纳米结构的一种强大且创新的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ef9/12095123/5ad25ae75220/40820_2025_1777_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验