Kim Yohan, Choi Eunjin, Kim Seunggu, Byon Hye Ryung
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
Chem Sci. 2023 Sep 1;14(39):10644-10663. doi: 10.1039/d3sc03220e. eCollection 2023 Oct 11.
This perspective paper comprehensively explores recent electrochemical studies on layered transition metal oxides (LTMO) in aqueous media and specifically encompasses two topics: catalysis of the oxygen evolution reaction (OER) and cathodes of aqueous lithium-ion batteries (LiBs). They involve conflicting requirements; OER catalysts aim to facilitate water dissociation, while for cathodes in aqueous LiBs it is essential to suppress water dissociation. The interfacial reactions taking place at the LTMO in these two distinct systems are of particular significance. We show various strategies for designing LTMO materials for each desired aim based on an in-depth understanding of electrochemical interfacial reactions. This paper sheds light on how regulating the LTMO interface can contribute to efficient water splitting and economical energy storage, all with a single material.
这篇观点论文全面探讨了近期在水性介质中对层状过渡金属氧化物(LTMO)的电化学研究,具体涵盖两个主题:析氧反应(OER)催化和水性锂离子电池(LiBs)的阴极。它们涉及相互矛盾的要求;OER催化剂旨在促进水的解离,而对于水性LiBs的阴极来说,抑制水的解离至关重要。在这两个不同系统中,LTMO发生的界面反应具有特别重要的意义。基于对电化学界面反应的深入理解,我们展示了针对每个期望目标设计LTMO材料的各种策略。本文阐明了如何通过调节LTMO界面来实现高效的水分解和经济的能量存储,且都只需一种材料。