Guo Rong, Li Yudu, Zhao Yibo, Jin Wen, Chai Yuhui, Anderson Aaron, Hassaneen Wael, Damon Bruce, Wszalek Tracey, Li Yao, Wiesner Hannes M, Zhu Xiao-Hong, Chen Wei, Sutton Bradley P, Liang Zhi-Pei
IEEE Trans Biomed Eng. 2025 May 21;PP. doi: 10.1109/TBME.2025.3572448.
To develop a high-resolution magnetic resonance (MR) metabolic imaging method for mapping human brain metabolite distributions at ultrahigh field (7T).
In data acquisition, a free-induction-decay (FID) based MR spectroscopic imaging (MRSI) sequence was implemented. To achieve high spatial resolution, the sequence used fast echo-planar spectroscopic imaging (EPSI) trajectories with echo-spacings larger than the Nyquist sampling interval. Using this sequence, 3D MRSI signals at isotropic nominal resolutions of 3.0 mm and 1.8 mm were acquired within scan times of 4.8 and 14.2 minutes, respectively. In data processing, model-based methods integrating subspace learning, spectral modeling, and generalized series modeling were developed to address key challenges, including spectral ghosting, low signal-to-noise ratio, and spectral aliasing.
The proposed acquisition and processing methods successfully generated high-resolution, high-quality metabolite maps of the human brain at 7T. Experimental results from phantom and in vivo scans validated the proposed method and showed its capability to capture detailed brain metabolite distributions.
This work demonstrates the feasibility of high-resolution brain metabolic imaging at ultrahigh field using MRSI acquisition sequence and model-based processing methods.
By providing high-resolution spatial mapping of brain metabolites within clinically feasible scan times, the proposed method promises to offer a powerful imaging tool for investigating brain metabolism, which is expected to be useful for various brain imaging applications.
开发一种高分辨率磁共振(MR)代谢成像方法,用于在超高场(7T)绘制人脑代谢物分布图。
在数据采集方面,实施了基于自由感应衰减(FID)的磁共振波谱成像(MRSI)序列。为了实现高空间分辨率,该序列使用了回波间隔大于奈奎斯特采样间隔的快速回波平面波谱成像(EPSI)轨迹。使用此序列,分别在4.8分钟和14.2分钟的扫描时间内获取了各向同性标称分辨率为3.0毫米和1.8毫米的三维MRSI信号。在数据处理方面,开发了基于模型的方法,该方法整合了子空间学习、谱建模和广义序列建模,以应对包括谱重影、低信噪比和谱混叠在内的关键挑战。
所提出的采集和处理方法成功生成了7T下人脑的高分辨率、高质量代谢物图谱。体模和体内扫描的实验结果验证了所提出的方法,并显示了其捕获详细脑代谢物分布的能力。
这项工作证明了使用MRSI采集序列和基于模型的处理方法在超高场进行高分辨率脑代谢成像的可行性。
通过在临床可行的扫描时间内提供脑代谢物的高分辨率空间图谱,所提出的方法有望提供一种强大的成像工具来研究脑代谢,预计对各种脑成像应用有用。