Virtus Health, Sydney, New South Wales, Australia.
IVFAustralia, Sydney, New South Wales, Australia.
Nat Med. 2024 Nov;30(11):3114-3120. doi: 10.1038/s41591-024-03166-5. Epub 2024 Aug 9.
To assess the value of deep learning in selecting the optimal embryo for in vitro fertilization, a multicenter, randomized, double-blind, noninferiority parallel-group trial was conducted across 14 in vitro fertilization clinics in Australia and Europe. Women under 42 years of age with at least two early-stage blastocysts on day 5 were randomized to either the control arm, using standard morphological assessment, or the study arm, employing a deep learning algorithm, intelligent Data Analysis Score (iDAScore), for embryo selection. The primary endpoint was a clinical pregnancy rate with a noninferiority margin of 5%. The trial included 1,066 patients (533 in the iDAScore group and 533 in the morphology group). The iDAScore group exhibited a clinical pregnancy rate of 46.5% (248 of 533 patients), compared to 48.2% (257 of 533 patients) in the morphology arm (risk difference -1.7%; 95% confidence interval -7.7, 4.3; P = 0.62). This study was not able to demonstrate noninferiority of deep learning for clinical pregnancy rate when compared to standard morphology and a predefined prioritization scheme. Australian New Zealand Clinical Trials Registry (ANZCTR) registration: 379161 .
为评估深度学习在选择体外受精最优胚胎方面的价值,一项多中心、随机、双盲、非劣效平行组试验在澳大利亚和欧洲的 14 家体外受精诊所进行。年龄在 42 岁以下且第 5 天有至少两个早期囊胚的女性被随机分配到对照组(使用标准形态评估)或研究组(使用深度学习算法智能数据分析评分(iDAScore)进行胚胎选择)。主要终点是临床妊娠率,非劣效边界为 5%。该试验纳入了 1066 名患者(iDAScore 组 533 名,形态组 533 名)。iDAScore 组的临床妊娠率为 46.5%(533 名患者中的 248 名),而形态组为 48.2%(533 名患者中的 257 名)(风险差异-1.7%;95%置信区间-7.7,4.3;P=0.62)。与标准形态和预先确定的优先级方案相比,本研究未能证明深度学习在临床妊娠率方面具有非劣效性。澳大利亚新西兰临床试验注册中心(ANZCTR)注册号:379161 。