Powezka Katarzyna, Slater Karin, Brind David, Wall Michael, Gkoutos Georgios, Juszczak Maciej
Birmingham Vascular Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.
Cancer and Genomic Sciences, University of Birmingham, Birmingham Research Park, Brimingham, United Kingdom.
Front Cardiovasc Med. 2025 May 7;12:1497822. doi: 10.3389/fcvm.2025.1497822. eCollection 2025.
The goals of this scoping review were to determine the source of data used to develop AI-based algorithms with emphasis on natural language processing, establish their application in different areas of vascular surgery and identify a target audience of published journals.
A literature search was carried out using established database from January 1996 to March 2023.
342 peer-reviewed articles met the eligibility criteria. NLP algorithms were described in 34 papers, while 115 and 193 papers focused on machine learning (ML) and deep learning (DL), respectively. The AI-based algorithms found widest application in research related to aorta (126 articles), carotid disease (85), and peripheral arterial disease (65). Image-based data were utilised in 216 articles, while 153 and 85 papers relied on medical records, and clinical parameters. The AI algorithms were used for predictive modelling (123 papers), medical image segmentation (118), and to aid identification, detection, and diagnosis (103).
Applications of Artificial Intelligence (AI) are gaining traction in healthcare, including vascular surgery. While most healthcare data is in the form of narrative text or audio recordings, natural language processing (NLP) offers the ability to extract information from unstructured medical records. This can be used to develop more accurate risk prediction models, support shared-decision model, and identify patients for trials to improve recruitment.
Utilisation of different data sources and AI technologies depends on the purpose of the undertaken research. Despite the abundance of available of textual data, the NLP is disproportionally underutilised AI sub-domain in vascular surgery.
本综述的目的是确定用于开发基于人工智能的算法(重点是自然语言处理)的数据来源,确定其在血管外科不同领域的应用,并确定已发表期刊的目标受众。
使用既定数据库对1996年1月至2023年3月期间的文献进行检索。
342篇同行评审文章符合纳入标准。34篇论文描述了自然语言处理算法,115篇和193篇论文分别侧重于机器学习(ML)和深度学习(DL)。基于人工智能的算法在与主动脉相关的研究(126篇文章)、颈动脉疾病(85篇)和外周动脉疾病(65篇)中应用最为广泛。216篇文章使用了基于图像的数据,153篇和85篇论文依赖于医疗记录和临床参数。人工智能算法用于预测建模(123篇论文)、医学图像分割(118篇)以及辅助识别、检测和诊断(103篇)。
人工智能(AI)在医疗保健领域,包括血管外科,正越来越受到关注。虽然大多数医疗数据是以叙述性文本或音频记录的形式存在,但自然语言处理(NLP)提供了从非结构化医疗记录中提取信息的能力。这可用于开发更准确的风险预测模型、支持共同决策模型以及识别适合试验的患者以改善招募情况。
不同数据源和人工智能技术的使用取决于所开展研究的目的。尽管有大量可用的文本数据,但在血管外科中,自然语言处理是使用比例失调的人工智能子领域。