Suppr超能文献

用于以水为质子源进行转移氢化的多价态钯光催化剂的原子尺度工程

Atomic Scale Engineering of Multivalence-State Palladium Photocatalyst for Transfer Hydrogenation with Water as a Proton Source.

作者信息

Zhao En, Kong Wenjing, Zoppellaro Giorgio, Yang Yue, Nan Bing, Li Lina, Zhang Wengjun, Chen Zhaohui, Bakandritsos Aristides, Wang Zhu-Jun, Beller Matthias, Zbořil Radek, Chen Zupeng

机构信息

National Key Laboratory for the Development and Utilization of Forest Food Resources, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China.

Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.

出版信息

Adv Mater. 2025 Aug;37(32):e2504108. doi: 10.1002/adma.202504108. Epub 2025 May 22.

Abstract

Hydrogenation reactions are fundamental in the fine chemical, pharmaceutical, and petrochemical industries, however heavily relying on H gas at high temperatures and pressures, incurring large energy and carbon costs. Photocatalytic transfer hydrogenation, using water as a proton source, offers a greener alternative, but existing photocatalysts often suffer from modest yields, limited selectivity, and narrow substrate scope. Additionally, they often require co-activation, such as Mg-activated water or non-sustainable hydrogen feeds. Here, a photocatalyst is introduced that offers high yields and selectivities across a broad spectrum of organic compounds. The developed photocatalyst is a multivalence palladium superstructure with ultrasmall Pd nanoparticles enveloped by isolated Pd/Pd atoms within a carbon-nitride matrix. Mechanistic studies reveal that the redox-flexible Pd single atoms, with triethylamine as an electronic modulator, attract photogenerated holes for water oxidation, while Pd nanoparticles facilitate hydrogen transfer to the unsaturated bonds of the organic molecules. The cooperative and dynamic behavior of Pd centers during catalysis, involving transitions among Pd, Pd, and Pd states, is validated using operando electron paramagnetic resonance spectroscopy. This multivalent palladium catalyst represents a conceptual advance in photocatalytic transfer hydrogenation with water as a hydrogen source, holding promise for sustainable hydrogenation processes in the chemical industry.

摘要

氢化反应在精细化工、制药和石化行业中至关重要,但严重依赖高温高压下的氢气,导致能源和碳成本高昂。光催化转移氢化以水作为质子源,提供了一种更绿色的选择,但现有的光催化剂往往产率适中、选择性有限且底物范围狭窄。此外,它们通常需要共活化,如镁活化水或不可持续的氢气进料。在此,引入了一种光催化剂,它能在广泛的有机化合物中提供高产率和选择性。所开发的光催化剂是一种多价钯超结构,在碳氮化物基质中,超小的钯纳米颗粒被孤立的钯/钯原子包裹。机理研究表明,具有氧化还原灵活性的钯单原子,以三乙胺作为电子调节剂,吸引光生空穴进行水氧化,而钯纳米颗粒促进氢转移到有机分子的不饱和键上。利用原位电子顺磁共振光谱验证了催化过程中钯中心的协同和动态行为,包括钯、钯和钯状态之间的转变。这种多价钯催化剂代表了以水为氢源的光催化转移氢化的概念性进展,有望用于化学工业中的可持续氢化过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2349/12355530/b5ffe22f4d64/ADMA-37-2504108-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验