Suppr超能文献

通过原位(光)电化学产生的氢气进行耦合氢化实现太阳能驱动的生物质升级

Solar-driven upgrading of biomass by coupled hydrogenation using in situ (photo)electrochemically generated H.

作者信息

Obata Keisuke, Schwarze Michael, Thiel Tabea A, Zhang Xinyi, Radhakrishnan Babu, Ahmet Ibbi Y, van de Krol Roel, Schomäcker Reinhard, Abdi Fatwa F

机构信息

Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.

Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.

出版信息

Nat Commun. 2023 Sep 27;14(1):6017. doi: 10.1038/s41467-023-41742-4.

Abstract

With the increasing pressure to decarbonize our society, green hydrogen has been identified as a key element in a future fossil fuel-free energy infrastructure. Solar water splitting through photoelectrochemical approaches is an elegant way to produce green hydrogen, but for low-value products like hydrogen, photoelectrochemical production pathways are difficult to be made economically competitive. A possible solution is to co-produce value-added chemicals. Here, we propose and demonstrate the in situ use of (photo)electrochemically generated H for the homogeneous hydrogenation of itaconic acid-a biomass-derived feedstock-to methyl succinic acid. Coupling these two processes offers major advantages in terms of stability and reaction flexibility compared to direct electrochemical hydrogenation, while minimizing the overpotential. An overall conversion of up to ~60% of the produced hydrogen is demonstrated for our coupled process, and a techno-economic assessment of our proposed device further reveals the benefit of coupling solar hydrogen production to a chemical transformation.

摘要

随着社会脱碳压力的不断增加,绿色氢能已被视为未来无化石燃料能源基础设施的关键要素。通过光电化学方法进行太阳能水分解是生产绿色氢能的一种有效方式,但对于像氢气这样的低价值产品,光电化学生产途径难以在经济上具有竞争力。一种可能的解决方案是联产增值化学品。在此,我们提出并展示了原位利用(光)电化学产生的氢气将生物质衍生原料衣康酸均匀氢化为甲基琥珀酸。与直接电化学氢化相比,将这两个过程耦合在稳定性和反应灵活性方面具有显著优势,同时将过电位降至最低。我们的耦合过程展示了高达约60%的生成氢气的总转化率,对我们所提出装置的技术经济评估进一步揭示了将太阳能制氢与化学转化相结合的益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验