Suppr超能文献

原发性自身免疫性溶血性贫血复发预测模型的构建:一项回顾性队列研究。

Construction of a predictive model for relapse of primary autoimmune hemolytic anemia: a retrospective cohort study.

作者信息

Li Pan, Zhong Chuanqi, Huang Xianjun, Cai Zhi, Guo Tianhong

机构信息

Department of Oncology, Xuyong County People's Hospital, Luzhou, Sichuan, China.

Clinical Laboratory, Luzhou Second People's Hospital, Luzhou, Sichuan, China.

出版信息

Ann Med. 2025 Dec;57(1):2506482. doi: 10.1080/07853890.2025.2506482. Epub 2025 May 22.

Abstract

OBJECTIVES

To develop a machine learning-based model to predict the relapse risk of Primary Autoimmune Haemolytic Anaemia (AIHA) after the last remission.

METHODS

A retrospective study was conducted on primary AIHA cases who visited the Affiliated Hospital of Southwest Medical University and Xuyong County People's Hospital from May 2017 to May 2022. Cases were categorized as relapsed or non-relapsed based on the 1-year outcomes. Twenty-two features were analyzed to identify relapse risk factors. The least absolute shrinkage and selection operator (LASSO) regression model and multivariate logistic regression analysis were used to establish a predictive model. The -index, Calibration curves, ROC, and Decision curve analysis (DCA) were used to evaluate the discriminatory, corrective, accurate, and clinical effectiveness of the predictive model.

RESULTS

A total of 232 cases of primary AIHA were included, and five potential variables including 'DAT results', 'Hb', 'Multiline therapy', 'Complicating ITP', and 'Complicating infection', have been screened for constructing a 1-year relapse risk prediction nomogram for primary AIHA. The nomogram has a -index of 0.852 (95% CI: 0.797-0.907), confirmed by bootstrapping validation as 0.829. The area under the ROC was 0.846. The DCA shows that when the threshold probability is in the range of 1 ∼ 91%.

CONCLUSIONS

By following the current diagnostic and treatment criteria for AIHA in China, we retrospectively collect a multitude of medical records and analyze several relevant variables of AIHA, construct a predictive model by machine learning. Using this 1-year relapse risk nomogram can effectively predict the risk of relapse within 1 year after remission of primary AIHA.

摘要

目的

建立基于机器学习的模型,以预测原发性自身免疫性溶血性贫血(AIHA)末次缓解后的复发风险。

方法

对2017年5月至2022年5月期间就诊于西南医科大学附属医院和叙永县人民医院的原发性AIHA病例进行回顾性研究。根据1年的结局将病例分为复发组和未复发组。分析22个特征以确定复发危险因素。采用最小绝对收缩和选择算子(LASSO)回归模型和多因素逻辑回归分析建立预测模型。使用C-index、校准曲线、ROC和决策曲线分析(DCA)评估预测模型的鉴别性、校正性、准确性和临床有效性。

结果

共纳入232例原发性AIHA病例,筛选出“直接抗人球蛋白试验(DAT)结果”、“血红蛋白(Hb)”、“多线治疗”、“并发免疫性血小板减少症(ITP)”和“并发感染”5个潜在变量,用于构建原发性AIHA的1年复发风险预测列线图。该列线图的C-index为0.852(95%CI:0.797 - 0.907),经自举验证确认为0.829。ROC曲线下面积为0.846。DCA显示,当阈值概率在1%至91%范围内时。

结论

按照我国目前AIHA的诊断和治疗标准,回顾性收集大量病历并分析AIHA的几个相关变量,通过机器学习构建预测模型。使用该1年复发风险列线图可有效预测原发性AIHA缓解后1年内的复发风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验