Suppr超能文献

实际应用中人工智能辅助的蛋白质-肽复合物预测

AI-Assisted Protein-Peptide Complex Prediction in a Practical Setting.

作者信息

Wang Darren Y, Wang Luxuan, Mi Andrew, Wang Junmei

机构信息

High School Student at Hampton Senior High School, Pittsburgh, Pennsylvania, USA.

Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

J Comput Chem. 2025 May 30;46(14):e70137. doi: 10.1002/jcc.70137.

Abstract

Accurate prediction of protein-peptide complex structures plays a critical role in structure-based drug design, including antibody design. Most peptide-docking benchmark studies were conducted using crystal structures of protein-peptide complexes; as such, the performance of the current peptide docking tools in the practical setting is unknown. Here, the practical setting implies there are no crystal or other experimental structures for the complex, nor for the receptor and peptide. In this work, we have developed a practical docking protocol that incorporated two famous machine learning models, AlphaFold 2 for structural prediction and ANI-2x for ab initio potential prediction, to achieve a high success rate in modeling protein-peptide complex structures. The docking protocol consists of three major stages. In the first stage, the 3D structure of the receptor is predicted by AlphaFold 2 using the monomer mode, and that of the peptide is predicted by AlphaFold 2 using the multimer mode. We found that it is essential to include the receptor information to generate a high-quality 3D structure of the peptide. In the second stage, rigid protein-peptide docking is performed using ZDOCK software. In the last stage, the top 10 docking poses are relaxed and refined by ANI-2x in conjunction with our in-house geometry optimization algorithm-conjugate gradient with backtracking line search (CG-BS). CG-BS was developed by us to more efficiently perform geometry optimization, which takes the potential and force directly from ANI-2x machine learning models. The docking protocol achieved a very encouraging performance for a set of 62 very challenging protein-peptide systems which had an overall success rate of 34% if only the top 1 docking poses were considered. This success rate increased to 45% if the top 3 docking poses were considered. It is emphasized that this encouraging protein-peptide docking performance was achieved without using any crystal or experimental structures.

摘要

蛋白质 - 肽复合物结构的准确预测在基于结构的药物设计(包括抗体设计)中起着关键作用。大多数肽对接基准研究是使用蛋白质 - 肽复合物的晶体结构进行的;因此,当前肽对接工具在实际应用中的性能尚不清楚。在这里,实际应用意味着该复合物以及受体和肽均没有晶体或其他实验结构。在这项工作中,我们开发了一种实用的对接方案,该方案结合了两个著名的机器学习模型,即用于结构预测的AlphaFold 2和用于从头算势能预测的ANI - 2x,以在蛋白质 - 肽复合物结构建模中获得高成功率。该对接方案包括三个主要阶段。在第一阶段,使用单体模式通过AlphaFold 2预测受体的三维结构,使用多聚体模式通过AlphaFold 2预测肽的三维结构。我们发现,纳入受体信息对于生成高质量的肽三维结构至关重要。在第二阶段,使用ZDOCK软件进行刚性蛋白质 - 肽对接。在最后阶段,前10个对接姿势通过ANI - 2x结合我们内部的几何优化算法——带回溯线搜索的共轭梯度法(CG - BS)进行松弛和优化。CG - BS是我们开发的,用于更有效地进行几何优化,它直接从ANI - 2x机器学习模型获取势能和力。对于一组62个极具挑战性的蛋白质 - 肽系统,该对接方案取得了非常令人鼓舞的性能,如果只考虑排名第一的对接姿势,总体成功率为34%。如果考虑排名前三的对接姿势,成功率则提高到45%。需要强调的是,在不使用任何晶体或实验结构的情况下实现了这种令人鼓舞的蛋白质 - 肽对接性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d35/12096808/8a8b5d171099/JCC-46-0-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验