Suppr超能文献

强化学习信号博弈中的同音异义词与语境

Homonyms and context in signalling game with reinforcement learning.

作者信息

Lipowska Dorota, Lipowski Adam, Ferreira António L

机构信息

Faculty of Modern Languages and Literature, Adam Mickiewicz University in Poznań, Poland.

Faculty of Physics, Adam Mickiewicz University in Poznań, Poland.

出版信息

PLoS One. 2025 May 22;20(5):e0322743. doi: 10.1371/journal.pone.0322743. eCollection 2025.

Abstract

Using multi-agent signalling game with reinforcement learning, we examine the influence of context on the dynamics of homonyms. In our approach, context denotes additional information sent to the receiver, which helps to recognise the signal. Agents in our model select a communicated word or its interpretation with a probability proportional to the power of its weight, which accumulates over previous successful communication attempts (probability~weightα). The behaviour of the model hinges to some extent on whether this probability depends linearly ([Formula: see text]) or superlinearly ([Formula: see text]) on the weight. Numerical as well as analytical results show that contextuality stabilizes homonyms and also affects the overall dynamics of language formation. While in the linear regime, contextuality can hinder the formation of an efficient language, in the superlinear regime-it can even speed up the process. Some aspects of the evolution of homonyms in our model can be understood using a certain urn model. Mathematical analysis demonstrates that in the superlinear regime and in the presence of contextuality, the urn model predicts the existence of polarised-like homonyms, while in the linear regime, only symmetric homonyms can exist. Since there are polarised homonyms in natural languages, our work suggests that the superlinear regime (which could be considered as a manifestation of the so-called Metcalfe's law) may be more appropriate to describe language formation than the linear regime.

摘要

我们使用带有强化学习的多智能体信号博弈,研究语境对同音异义词动态变化的影响。在我们的方法中,语境表示发送给接收者的附加信息,这有助于识别信号。我们模型中的智能体以与其权重的幂成正比的概率选择一个传达的单词或其解释,该权重会在先前成功的通信尝试中累积(概率~权重α)。模型的行为在一定程度上取决于这个概率是线性地([公式:见原文])还是超线性地([公式:见原文])依赖于权重。数值和分析结果表明,语境性使同音异义词稳定下来,并且还会影响语言形成的整体动态变化。在线性状态下,语境性可能会阻碍高效语言的形成,而在超线性状态下,它甚至可以加速这一过程。我们模型中同音异义词演变的某些方面可以用某个瓮模型来理解。数学分析表明,在超线性状态且存在语境性的情况下,瓮模型预测存在极化类同音异义词,而在直线状态下,仅能存在对称同音异义词。由于自然语言中存在极化同音异义词,我们的研究表明,与线性状态相比,超线性状态(可被视为所谓梅特卡夫定律的一种表现)可能更适合描述语言形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c1/12097563/90d869e3330a/pone.0322743.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验