Suppr超能文献

强化学习在高效通信中的应用。

A reinforcement-learning approach to efficient communication.

机构信息

Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden.

Department of Philosophy, Linguistics, and Theory of Science, University of Gothenburg, Gothenburg, Sweden.

出版信息

PLoS One. 2020 Jul 15;15(7):e0234894. doi: 10.1371/journal.pone.0234894. eCollection 2020.

Abstract

We present a multi-agent computational approach to partitioning semantic spaces using reinforcement-learning (RL). Two agents communicate using a finite linguistic vocabulary in order to convey a concept. This is tested in the color domain, and a natural reinforcement learning mechanism is shown to converge to a scheme that achieves a near-optimal trade-off of simplicity versus communication efficiency. Results are presented both on the communication efficiency as well as on analyses of the resulting partitions of the color space. The effect of varying environmental factors such as noise is also studied. These results suggest that RL offers a powerful and flexible computational framework that can contribute to the development of communication schemes for color names that are near-optimal in an information-theoretic sense and may shape color-naming systems across languages. Our approach is not specific to color and can be used to explore cross-language variation in other semantic domains.

摘要

我们提出了一种使用强化学习(RL)对语义空间进行分区的多智能体计算方法。两个智能体使用有限的语言词汇进行通信,以传达一个概念。这在颜色域中进行了测试,并展示了一种自然的强化学习机制,可以收敛到一种实现简单性与通信效率之间近乎最优折衷的方案。结果不仅在通信效率方面,而且在对颜色空间的分割的分析方面都得到了呈现。还研究了环境因素(如噪声)变化的影响。这些结果表明,RL 提供了一个强大而灵活的计算框架,可以为颜色名称的通信方案的发展做出贡献,这些方案在信息论意义上是近乎最优的,并且可能会影响跨语言的颜色命名系统。我们的方法不仅限于颜色,可以用于探索其他语义领域的跨语言变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a137/7363069/246a4dc2f9e6/pone.0234894.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验