Suppr超能文献

深度学习引导的动态蛋白质设计

Deep learning-guided design of dynamic proteins.

作者信息

Guo Amy B, Akpinaroglu Deniz, Stephens Christina A, Grabe Michael, Smith Colin A, Kelly Mark J S, Kortemme Tanja

机构信息

The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA.

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.

出版信息

Science. 2025 May 22;388(6749):eadr7094. doi: 10.1126/science.adr7094.

Abstract

Deep learning has advanced the design of static protein structures, but the controlled conformational changes that are hallmarks of natural signaling proteins have remained inaccessible to de novo design. Here, we describe a general deep learning-guided approach for de novo design of dynamic changes between intradomain geometries of proteins, similar to switch mechanisms prevalent in nature, with atomic-level precision. We solve four structures that validate the designed conformations, demonstrate modulation of the conformational landscape by orthosteric ligands and allosteric mutations, and show that physics-based simulations are in agreement with deep-learning predictions and experimental data. Our approach demonstrates that new modes of motion can now be realized through de novo design and provides a framework for constructing biology-inspired, tunable, and controllable protein signaling behavior de novo.

摘要

深度学习推动了静态蛋白质结构的设计,但天然信号蛋白的标志性特征——可控的构象变化,在从头设计中仍难以实现。在此,我们描述了一种通用的深度学习引导方法,用于蛋白质结构域内几何结构之间动态变化的从头设计,类似于自然界中普遍存在的开关机制,具有原子水平的精度。我们解析了四个结构,验证了设计的构象,证明了正构配体和变构突变对构象景观的调节,并表明基于物理的模拟与深度学习预测和实验数据一致。我们的方法表明,现在可以通过从头设计实现新的运动模式,并为从头构建受生物学启发、可调节和可控的蛋白质信号传导行为提供了一个框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验