Suppr超能文献

通过调节酿酒酵母中的氮代谢来控制酒精发酵

Control of alcoholic fermentation through modulation of nitrogen metabolism in Saccharomyces cerevisiae.

作者信息

Akasaka Naoki, Sugimoto Yukiko, Kajihara Takuma, Takagi Hiroshi, Watanabe Daisuke

机构信息

Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8961-5, Takayama-cho, Ikoma, Nara 630-0192, Japan.

Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.

出版信息

J Biotechnol. 2025 Sep;405:159-168. doi: 10.1016/j.jbiotec.2025.05.015. Epub 2025 May 20.

Abstract

Saccharomyces cerevisiae sake strains exhibit high alcoholic fermentation performance. Comparative transcriptomic analysis revealed that the expression of genes required for nitrogen sensing and metabolism, including amino acid biosynthesis and uptake, was markedly lower in the sake strain than in the laboratory strain. Thus, we hypothesized that changes in nitrogen metabolism affect the fermentation capability of S. cerevisiae. To evaluate the impact of altered nitrogen metabolism on alcoholic fermentation, we focused on the transcription activators Gcn4p, Gln3p, and Gat1p, and the protein kinase Npr1p, all of which are key regulators controlling expression of genes for amino acid biosynthesis and uptake responding to nitrogen availability. Fermentation tests demonstrated that laboratory strain-derived single-deletion mutants of the regulator genes exhibited higher fermentation performance than the parental strain, which was accompanied by decrease in intracellular amino acid levels in the mutants. Disruption of the genes encoding glutamate dehydrogenases, which play a central role in nitrogen assimilation, also enhanced the fermentation rate. A Greatwall family protein kinase Rim15p inhibits alcoholic fermentation by diverting carbon flux from glycolysis to the synthesis of 1,3-β-glucan, a major cell wall component. Since the content of 1,3-β-glucan was unaffected by disruption of the regulator genes, the elevated fermentation performance of the disruptants was accomplished independently of the signaling pathway governed by Rim15p. The high fermentation rate of the disruptants might be attributed to increased carbon entry into glycolysis caused by the compromised biosynthesis of amino acids, which are synthesized from intermediary metabolites of glycolysis and tricarboxylic acid cycle.

摘要

酿酒酵母清酒菌株表现出较高的酒精发酵性能。比较转录组分析表明,在清酒菌株中,包括氨基酸生物合成和摄取在内的氮感知和代谢所需基因的表达明显低于实验室菌株。因此,我们推测氮代谢的变化会影响酿酒酵母的发酵能力。为了评估氮代谢改变对酒精发酵的影响,我们重点研究了转录激活因子Gcn4p、Gln3p和Gat1p以及蛋白激酶Npr1p,它们都是控制氨基酸生物合成和摄取相关基因表达以响应氮可用性的关键调节因子。发酵试验表明,调节基因的实验室菌株衍生单缺失突变体表现出比亲本菌株更高的发酵性能,同时突变体的细胞内氨基酸水平降低。编码在氮同化中起核心作用的谷氨酸脱氢酶的基因的破坏也提高了发酵速率。一种长城家族蛋白激酶Rim15p通过将碳通量从糖酵解转移到主要细胞壁成分1,3-β-葡聚糖的合成来抑制酒精发酵。由于1,3-β-葡聚糖的含量不受调节基因破坏的影响,破坏体发酵性能的提高是独立于由Rim15p控制的信号通路实现的。破坏体的高发酵速率可能归因于氨基酸生物合成受损导致更多碳进入糖酵解,氨基酸是由糖酵解和三羧酸循环的中间代谢物合成的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验