Zhou Yuanhao, Ai Jiawen, Ye Zi, Chen Kexin, Lin JingXiong, Zhang Zhenhua, Luo Mi, Zhou Benjie, Xiang Shijian, Zhou Jianhua, Huo Xinming
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
Adv Sci (Weinh). 2025 Aug;12(32):e02721. doi: 10.1002/advs.202502721. Epub 2025 May 23.
Advancing precision medicine requires efficient small molecule biomarker detection in biofluids, yet existing methods encounter challenges in complexity, portability, and throughput. This study presents an integrated miniature blood processing and mass spectrometry (MS) analysis system, which incorporates automated magnetic solid-phase extraction, self-aspiration sampling miniature mass spectrometer, and deep learning algorithms for automated quantitative analysis. It achieves full automation from sample preparation to detection, demonstrating the capability to analyze serum psychoactive drugs with a 15-second/MS acquisition and 8-sample parallel processing within 30 minutes (including pretreatment). This has significantly increased detection throughput and facilitated the establishment of the standard curve. The novel dual-target ion parallel tandem MS analysis technique, combined with a U-net peak area recognition algorithm, achieved over 98% identification accuracy with less than 0.2% area prediction deviation. Quantitative analysis showed high correlation coefficients >0.99 in medically relevant ranges, supported by relative standard deviation < 10% and average back-calculated accuracy deviation < 3.5%. Clinical validation revealed strong concordance with LC-MS/MS. The system's integration of automated sample processing, miniature MS hardware, and AI-driven data analysis establishes a paradigm for high-throughput clinical detection. The advantages of accuracy, automation, intelligence, miniaturization, and high throughput suggest significant potential for this system in clinical detection and personalized medicine.
推进精准医学需要在生物流体中进行高效的小分子生物标志物检测,但现有方法在复杂性、便携性和通量方面面临挑战。本研究提出了一种集成的微型血液处理和质谱(MS)分析系统,该系统结合了自动磁性固相萃取、自吸样微型质谱仪和用于自动定量分析的深度学习算法。它实现了从样品制备到检测的全自动化,展示了在30分钟内(包括预处理)以15秒/次质谱采集和8个样品并行处理的能力来分析血清精神活性药物。这显著提高了检测通量并有助于建立标准曲线。新颖的双目标离子平行串联质谱分析技术,结合U-net峰面积识别算法,实现了超过98%的识别准确率,面积预测偏差小于0.2%。定量分析在医学相关范围内显示出大于0.99的高相关系数,相对标准偏差小于10%,平均反算准确率偏差小于3.5%。临床验证表明与液相色谱-质谱联用(LC-MS/MS)有很强的一致性。该系统将自动样品处理、微型质谱硬件和人工智能驱动的数据分析集成在一起,为高通量临床检测建立了一种范例。该系统在准确性、自动化、智能化、小型化和高通量方面的优势表明其在临床检测和个性化医学中具有巨大潜力。