Shahzadi Samia, Moussa Ihab Mohamed, Mumtaz Sohail, Nazir S
Department of Physics, University of Sargodha 40100 Sargodha Pakistan
Department of Botany and Microbiology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia.
RSC Adv. 2025 May 21;15(22):17142-17152. doi: 10.1039/d5ra02453f.
Half-metallic (HM) ferromagnetic (FM)/ferrimagnetic (FIM) materials with a large energy-gap ( ) and high magnetocrystalline anisotropy energy (MAE) are receiving consideration for their potential usage in solid-state electronic devices. This study explores various traits of the pristine (prs.)/Ir-doped (dop.) SrCaOsO structure using calculations, where Ir is doped at the Os-site. To determine the synthesis feasibility of the structures under ambient conditions, the formation energy, elastic constants, and phonon curves are determined. The prs. structure manifests a FM semiconducting nature with an of 0.048 eV. Strikingly, the Ir-dop. structure becomes HM FIM because additional electrons provided by the dopant (Ir) cause a repulsion in the Os t spin-minority channel, resulting in conductivity. Conversely, an of 1.15 eV in the spin-majority channel exists, which is high enough to keep the HM state stable. The computed partial spin-moment on the Os in the prs. system is 1.19 . In the Ir-dop. system it is 1.09/-1.39 on the Os/Ir ion holding an Os/Ir state with electronic distributions of 5d(t ↑t ↓e ↑e )/5d(t ↑t ↓e ↑e ) with . Further, the spin-magnetization density isosurfaces assist in determining the values and FM/FIM state of the prs./Ir-dop. system holding a Curie temperature ( ) of 185/171 K. Besides this, we computed the thermoelectric properties of the prs./Ir-dop. motifs; the figure of merit (0.33/0.02), Seebeck coefficient (147/30 μV K), and low thermal conductivity (0.21/0.71 × 10 Ωm s) at 300 K highlight their potential for conversion devices. Interestingly, a semiconducting-to-HM transition is predicted at a crucial compressive strain of -3% in the prs. structure. Conversely, the HM state in the dop. structure displays robustness against strain. Additionally, it is shown that an applied tensile strain can significantly improve , while compressive strains illustrate a positive impact on the value.
具有大能隙( )和高磁晶各向异性能量(MAE)的半金属(HM)铁磁(FM)/亚铁磁(FIM)材料因其在固态电子器件中的潜在应用而受到关注。本研究使用 计算探索了原始(prs.)/Ir掺杂(dop.)SrCaOsO结构的各种特性,其中Ir在Os位点进行掺杂。为了确定这些结构在环境条件下的合成可行性,测定了形成能、弹性常数和声子曲线。原始结构表现出FM半导体性质, 为0.048 eV。引人注目的是,Ir掺杂结构变为HM FIM,因为掺杂剂(Ir)提供的额外电子在Os t 自旋少数通道中引起排斥,从而产生导电性。相反,在自旋多数通道中存在1.15 eV的 ,这足以保持HM状态稳定。计算得到的原始系统中Os上的部分自旋矩为1.19 。在Ir掺杂系统中,在具有5d(t ↑t ↓e ↑e )/5d(t ↑t ↓e ↑e )电子分布且 的Os/Ir离子上,Os/Ir的自旋矩为1.09/-1.39 。此外,自旋磁化密度等值面有助于确定原始/Ir掺杂系统的 值和FM/FIM状态,其居里温度( )为185/171 K。除此之外,我们计算了原始/Ir掺杂基序的热电性质;300 K时的优值(0.33/0.02)、塞贝克系数(147/30 μV K)和低热导率(0.21/0.71 × 10 Ωm s)突出了它们在转换器件方面的潜力。有趣的是,预测原始结构在关键压缩应变-3%时会发生从半导体到HM的转变。相反,掺杂结构中的HM状态对应变表现出鲁棒性。此外,结果表明施加拉伸应变可显著提高 ,而压缩应变对 值有积极影响。