Suppr超能文献

用于组织工程应用的埃拉斯托兰热塑性聚氨酯的3D熔喷:一项初步研究。

3D Melt Blowing of Elastollan Thermoplastic Polyurethane for Tissue Engineering Applications: A Pilot Study.

作者信息

Pawar Advay, Anderson Bruce, Pourdeyhimi Behnam, McNulty Amy L, Fisher Matthew, Shirwaiker Rohan

机构信息

Fitts Department of Industrial & Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA.

Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA.

出版信息

Manuf Lett. 2024 Oct;41(Suppl):357-363. doi: 10.1016/j.mfglet.2024.09.043. Epub 2024 Oct 15.

Abstract

Scaffolds, in addition to being biocompatible, should possess structural and mechanical properties similar to the natural tissues they intend to replace. Many tissue engineering applications require porous 3D scaffolds characterized by unique microfibrous organization and mechanical anisotropy. Manufacturing process principles and process parameter-biomaterial interactions ultimately govern the properties that can be achieved in the scaffold. In this study, we investigate a recently developed nonwoven scaffold fabrication process, 3D melt blowing (3DMB), for processing Elastollan, a thermoplastic polyurethane with basic mechanical properties suitable for musculoskeletal tissue engineering. The range of feasible processing parameters was screened and the effects of two sets of critical process parameters (fiber deposition offset and surface velocity of the collector) that produced contrasting scaffold morphologies were assessed. Results showed that scaffolds of Group B that were fabricated at the higher fiber deposition offset (90%) and higher surface velocity of the collector (6×10 mm/min) possessed significantly smaller fiber diameter and higher porosity and degree of fiber alignment along the principal direction of collector rotation during 3DMB (all p<0.05) compared to Group A scaffolds (fabricated at 50% offset and 1×10 mm/min surface velocity). Although both groups possessed similar tensile stiffness, the elongation at failure was significantly different (p<0.0001). The higher elongation at failure of Group B correlated with the higher degree of fiber alignment in these scaffolds. In contrast, the more isotropic fibrous organization of Group A contributed to their higher compressive stiffness (p=0.004). The introduction of NaOH treatment to improve hydrophilicity of the scaffolds resulted in a significant reduction of tensile stiffness of Group A (p<0.05) but not Group B. This treatment did not significantly affect the elongation at failure or compressive stiffness of both groups. With NaOH-treatment, both groups demonstrated good biocompatibility when seeded with fibroblast cells over 14 days. This study confirms the ability to fabricate via 3DMB, biocompatible, micro-fibrous, Elastollan scaffolds relevant for musculoskeletal tissue engineering.

摘要

支架除了具有生物相容性外,还应具备与它们打算替代的天然组织相似的结构和力学性能。许多组织工程应用需要具有独特微纤维结构和力学各向异性的多孔三维支架。制造工艺原理以及工艺参数与生物材料的相互作用最终决定了支架能够实现的性能。在本研究中,我们研究了一种最近开发的非织造支架制造工艺——三维熔体吹塑(3DMB),用于加工埃拉斯托纶,一种具有适合肌肉骨骼组织工程基本力学性能的热塑性聚氨酯。筛选了可行的加工参数范围,并评估了两组产生对比支架形态的关键工艺参数(纤维沉积偏移和收集器表面速度)的影响。结果表明,与A组支架(在50%偏移和1×10 mm/min表面速度下制造)相比,在较高纤维沉积偏移(90%)和较高收集器表面速度(6×10 mm/min)下制造的B组支架在三维熔体吹塑过程中具有明显更小的纤维直径、更高的孔隙率以及沿收集器旋转主方向更高的纤维排列程度(所有p<0.05)。尽管两组具有相似的拉伸刚度,但断裂伸长率显著不同(p<0.0001)。B组较高的断裂伸长率与这些支架中较高的纤维排列程度相关。相比之下,A组更各向同性的纤维结构导致其具有更高的压缩刚度(p=0.004)。引入NaOH处理以改善支架的亲水性导致A组的拉伸刚度显著降低(p<0.05),但B组没有。该处理对两组的断裂伸长率或压缩刚度没有显著影响。经过NaOH处理后,两组在接种成纤维细胞14天后均表现出良好的生物相容性。本研究证实了通过三维熔体吹塑制造与肌肉骨骼组织工程相关的生物相容性微纤维埃拉斯托纶支架的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda0/12097755/62397eae785d/nihms-2080079-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验