Suppr超能文献

基因组是多种基因内容、生物合成基因簇和物种特异性基因的巨大储存库。

genomes are a large reservoir of diverse gene content, biosynthetic gene clusters, and species-specific genes.

作者信息

Eripogu Kiran Kumar, Yu Chun-Ping, Tsai An-I, Lin Jinn-Jy, Lin Hsiao-Ching, Li Wen-Hsiung

机构信息

Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.

Biodiversity Research Center, Academia Sinica (BRCAS), Taipei City, Taiwan.

出版信息

mBio. 2025 Jun 11;16(6):e0094725. doi: 10.1128/mbio.00947-25. Epub 2025 May 23.

Abstract

UNLABELLED

The genus represents a largely untapped source of valuable secondary metabolites, yet its biosynthetic potential, gene content, and evolutionary history remain underexplored. By analyzing 263 genomes across 88 species, we found that varies greatly in genome size and gene content. It exhibits an open pangenome with a small core genome (<900 genes) and high genomic fluidity (0.76), indicating high gene turnover. A large proportion (75%) of its genes are species-specific, indicating high genomic plasticity. Average nucleotide identity (ANI) analysis confirmed taxonomic relationships, with most species showing ANI values (80-85%). showed an ANI of ~84% with , supporting its reclassification under . The biosynthetic capabilities of the genus are striking, with the presence of >8,000 biosynthetic gene clusters (BGCs), dominated by type 1 polyketide synthase, terpenes, and non-ribosomal polypeptide synthetases, establishing as the Actinomycetota genus that has the largest biosynthetic repertoire. Around 35% of BGCs remain uncharacterized, suggesting 's high potential for novel natural product discoveries. Our study is the first to identify a prodigiosin BGC in . Network analysis revealed complex evolutionary connections between 's gene cluster families (GCFs) and MIBiG reference BGCs, suggesting evolutionary changes, including gene gains and losses, that may have influenced the genus's BGC diversity and composition. Synteny analysis uncovered conserved and unique gene arrangements across and related genera, mostly with core genes conserved in Actinomycetota. Our study addressed unmet clinical and biotechnological challenges while revealing evolutionary mechanisms that shape microbial diversity and adaptability.

IMPORTANCE

Understanding the genomic diversity and biosynthetic potential of microorganisms is instrumental for addressing issues in microbial evolution, natural product discovery, and host-microbe interactions. , a bacterial genus known for its opportunistic pathogenicity, represents an underexplored group of immense genomic diversity and biosynthetic capabilities. This study employed genome mining to reveal the open pangenome of and identified an extensive repertoire of BGCs, including novel clusters with the potential to produce therapeutically significant compounds such as prodigiosin-related compounds. By integrating genome mining, phylogenetics, and synteny analysis, this study provides insights into how genomic plasticity, species-specific genes, and evolutionary changes such as gene gains and losses that contribute to 's biosynthetic diversity and evolution. These findings contribute to advancing microbial genomics, evolution, and biotechnology by uncovering the potential of to address challenges in infectious diseases and natural product discovery. This study exemplifies how genome mining can illuminate the ecological and clinical significance of microbial diversity.

摘要

未标记

该属代表了一个在很大程度上尚未开发的有价值次生代谢产物来源,但其生物合成潜力、基因含量和进化历史仍未得到充分探索。通过分析88个物种的263个基因组,我们发现其基因组大小和基因含量差异很大。它呈现出一个开放的泛基因组,核心基因组较小(<900个基因)且基因组流动性高(0.76),表明基因周转频繁。其很大一部分(75%)基因是物种特异性的,表明基因组可塑性高。平均核苷酸同一性(ANI)分析证实了分类关系,大多数物种的ANI值在80 - 85%之间。[具体物种1]与[具体物种2]的ANI约为84%,支持将其重新分类到[重新分类后的属]下。该属的生物合成能力惊人,存在超过8000个生物合成基因簇(BGC),主要由1型聚酮合酶、萜类和非核糖体多肽合成酶主导,使其成为放线菌门中具有最大生物合成库的属。约35%的BGC仍未被表征,表明[该属]在发现新型天然产物方面具有很高潜力。我们的研究首次在[具体物种]中鉴定出灵菌红素BGC。网络分析揭示了[该属]的基因簇家族(GCF)与MIBiG参考BGC之间复杂的进化联系,表明进化变化,包括基因的获得和丢失,可能影响了该属的BGC多样性和组成。共线性分析揭示了[该属]及其相关属之间保守和独特的基因排列,大多数核心基因在放线菌门中是保守的。我们的研究解决了未满足的临床和生物技术挑战,同时揭示了塑造微生物多样性和适应性的进化机制。

重要性

了解微生物的基因组多样性和生物合成潜力对于解决微生物进化、天然产物发现和宿主 - 微生物相互作用等问题至关重要。[该属]是一个以机会致病性而闻名的细菌属,代表了一个基因组多样性和生物合成能力巨大但未得到充分探索的群体。本研究采用基因组挖掘来揭示[该属]的开放泛基因组,并鉴定了大量的BGC,包括有可能产生具有治疗意义的化合物(如灵菌红素相关化合物)的新型基因簇。通过整合基因组挖掘、系统发育学和共线性分析,本研究深入了解了基因组可塑性、物种特异性基因以及基因获得和丢失等进化变化如何促成[该属]的生物合成多样性和进化。这些发现通过揭示[该属]在应对传染病和天然产物发现挑战方面的潜力,有助于推动微生物基因组学、进化和生物技术的发展。这项研究例证了基因组挖掘如何能够阐明微生物多样性的生态和临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d52/12153302/3c087d649919/mbio.00947-25.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验