Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, China.
BMC Genomics. 2023 Aug 17;24(1):462. doi: 10.1186/s12864-023-09555-3.
Numerous studies in the past have expanded our understanding of the genetic differences of global distributed cyanobacteria that originated around billions of years ago, however, unraveling how gene gain and loss drive the genetic evolution of cyanobacterial species, and the trade-off of these evolutionary forces are still the central but poorly understood issues.
To delineate the contribution of gene flow in mediating the hereditary differentiation and shaping the microbial evolution, a global genome-wide study of bloom-forming cyanobacterium, Microcystis aeruginosa species complex, provided robust evidence for genetic diversity, reflected by enormous variation in gene repertoire among various strains. Mathematical extrapolation showed an 'open' microbial pan-genome of M. aeruginosa species, since novel genes were predicted to be introduced after new genomes were sequenced. Identification of numerous horizontal gene transfer's signatures in genome regions of interest suggested that genome expansion via transformation and phage-mediated transduction across bacterial lineage as an evolutionary route may contribute to the differentiation of Microcystis functions (e.g., carbohydrate metabolism, amino acid metabolism, and energy metabolism). Meanwhile, the selective loss of some dispensable genes at the cost of metabolic versatility is as a mean of adaptive evolution that has the potential to increase the biological fitness.
Now that the recruitment of novel genes was accompanied by a parallel loss of some other ones, a trade-off in gene content may drive the divergent differentiation of M. aeruginosa genomes. Our study provides a genetic framework for the evolution of M. aeruginosa species and illustrates their possible evolutionary patterns.
过去的许多研究都扩展了我们对数十亿年前起源的全球分布蓝藻的遗传差异的理解,然而,揭示基因获得和丢失如何驱动蓝藻物种的遗传进化,以及这些进化力量的权衡仍然是核心但理解不足的问题。
为了描绘基因流在介导遗传分化和塑造微生物进化中的作用,对形成水华的蓝藻、铜绿微囊藻物种复合体进行了全球全基因组研究,为遗传多样性提供了有力的证据,这反映在各种菌株之间的基因库中存在巨大的变异。数学外推表明,铜绿微囊藻物种的微生物泛基因组是“开放的”,因为在新基因组测序后,预测会有新的基因被引入。在基因组感兴趣区域中鉴定出大量水平基因转移的特征表明,通过转化和噬菌体介导的转导在细菌谱系中扩展基因组作为一种进化途径可能有助于微囊藻功能(例如,碳水化合物代谢、氨基酸代谢和能量代谢)的分化。同时,一些非必需基因的选择性丢失以牺牲代谢多功能性为代价,是一种适应进化的手段,有可能提高生物适应性。
既然新基因的招募伴随着一些其他基因的平行丢失,那么基因含量的权衡可能会驱动铜绿微囊藻基因组的分化。我们的研究为铜绿微囊藻物种的进化提供了遗传框架,并说明了它们可能的进化模式。