García-Franco Ana, de la Torre Jesús, Godoy Patricia, Duque Estrella, López Carmen, Gavira José A, Ramos Juan L
Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
Programa de Doctorado en Bioquímica y Biología Molecular, Universidad de Granada, Granada, Spain.
mBio. 2025 Jun 11;16(6):e0071425. doi: 10.1128/mbio.00714-25. Epub 2025 May 23.
Microbial biosynthesis of aromatic compounds offers significant advantages over petrochemical methods, which rely on fossil fuels and high energy inputs. Microbial fermentations occur at room temperature and ambient pressure, reducing carbon emissions and energy consumption by up to 90%. Genetic engineering of microbial chassis is key to optimizing biosynthetic processes, enabling efficient production of aromatic compounds from sugars. However, the intrinsic toxicity of these compounds presents challenges. DOT-T1E, known for its tolerance to solvents, is ideal for producing toxic compounds. Styrene biosynthesis involves converting phenylalanine into -cinnamate via phenylalanine ammonia lyase enzymes, followed by decarboxylation to styrene. This second step is challenging, as -cinnamate decarboxylases have only been described in fungi. PSC1, a consensus protein designed from multiple alignments of fungal ferulate decarboxylases, enables styrene production in . PSC1 is a globular dimer with a molecular mass of 104.7 kDa, high thermal stability ( 63°C), and activity at temperatures up to 50°C. The crystal structure of PSC1, determined at 2.1 Å, reveals a homodimer with three domains per monomer. A hydrophobic pocket in domain 2, essential for cofactor and substrate binding, was identified. Mutagenesis shows that Arg175, Glu280, and Glu285 are critical for catalysis, as replacing them with alanine abolished the decarboxylation.IMPORTANCEThe petrochemical industry is highly polluting due to its use of extremely high temperatures, high pressure, and toxic catalysts. Synthetic biology offers an alternative by enabling the production of many chemicals through cell factories that operate at room temperature and ambient pressure, potentially reducing CO emissions by up to 90%. We have engineered a solvent-tolerant strain to produce styrene from L-phenylalanine in a two-step process. For the second step, we designed a consensus protein that operates efficiently. In this study, we present its physico-chemical properties and unveil its 3D structure.
与依赖化石燃料和高能量输入的石化方法相比,芳香族化合物的微生物生物合成具有显著优势。微生物发酵在室温和常压下进行,可减少高达90%的碳排放和能源消耗。对微生物底盘进行基因工程改造是优化生物合成过程的关键,能够实现从糖类高效生产芳香族化合物。然而,这些化合物的内在毒性带来了挑战。DOT-T1E以其对溶剂的耐受性而闻名,是生产有毒化合物的理想选择。苯乙烯的生物合成包括通过苯丙氨酸解氨酶将苯丙氨酸转化为肉桂酸,然后脱羧生成苯乙烯。第二步具有挑战性,因为肉桂酸脱羧酶仅在真菌中被描述过。PSC1是一种根据真菌阿魏酸脱羧酶的多重比对设计的共有蛋白,能够在大肠杆菌中生产苯乙烯。PSC1是一种球状二聚体,分子量为104.7 kDa,具有高热稳定性(63°C),在高达50°C的温度下仍有活性。PSC1的晶体结构在2.1 Å分辨率下确定,显示每个单体有三个结构域的同型二聚体。在结构域2中发现了一个疏水口袋,对辅因子和底物结合至关重要。诱变表明,Arg175、Glu280和Glu285对催化至关重要,用丙氨酸取代它们会消除脱羧作用。重要性石化行业由于使用极高的温度、高压和有毒催化剂,污染严重。合成生物学提供了一种替代方案,通过在室温和常压下运行的细胞工厂生产多种化学品,有可能将二氧化碳排放量减少高达90%。我们构建了一种耐溶剂的大肠杆菌菌株,通过两步法从L-苯丙氨酸生产苯乙烯。对于第二步,我们设计了一种高效运作的共有蛋白。在本研究中,我们展示了它的物理化学性质并揭示了其三维结构。