文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在没有匹配训练对象的情况下对扩散磁共振成像数据进行跨站点协调。

Cross-site harmonization of diffusion MRI data without matched training subjects.

作者信息

De Luca Alberto, Swartenbroekx Tine, Seelaar Harro, van Swieten John, Cetin Karayumak Suheyla, Rathi Yogesh, Pasternak Ofer, Jiskoot Lize, Leemans Alexander

机构信息

Image Sciences Institute, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.

Department of Neurology and Alzheimer Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands.

出版信息

Magn Reson Med. 2025 Oct;94(4):1750-1762. doi: 10.1002/mrm.30575. Epub 2025 May 23.


DOI:10.1002/mrm.30575
PMID:40407799
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12309894/
Abstract

PURPOSE: Diffusion MRI (dMRI) data typically suffer of significant cross-site variability, which prevents naively performing pooled analyses. To attenuate cross-site variability, harmonization methods such as the rotational invariant spherical harmonics (RISH) have been introduced to harmonize the dMRI data at the signal level. A common requirement of the RISH method is the availability of healthy individuals who are matched at the group level, which may not always be readily available, particularly retrospectively. In this work, we propose a framework to harmonize dMRI without matched training groups. METHODS: Our framework learns harmonization features while controlling for potential covariates using a voxel-based generalized linear model (GLM). RISH-GLM allows us to simultaneously harmonize data from any number of sites while also accounting for covariates of interest, thus not requiring matched training subjects. Additionally, RISH-GLM can harmonize data from multiple sites in a single step, whereas RISH is performed for each site independently. RESULTS: We considered data of training subjects from retrospective cohorts acquired with three different scanners and performed three harmonization experiments of increasing complexity. First, we demonstrate that RISH-GLM is equivalent to conventional RISH when trained with data of matched training subjects. Second, we demonstrate that RISH-GLM can effectively learn harmonization with two groups of highly unmatched subjects. Third, we evaluate the ability of RISH-GLM to simultaneously harmonize data from three different sites. CONCLUSION: RISH-GLM can learn cross-site harmonization both from matched and unmatched groups of training subjects and can effectively be used to harmonize data of multiple sites in one single step.

摘要

目的:扩散磁共振成像(dMRI)数据通常存在显著的跨站点变异性,这使得简单地进行汇总分析变得困难。为了减弱跨站点变异性,已引入诸如旋转不变球谐函数(RISH)等归一化方法在信号层面上对dMRI数据进行归一化。RISH方法的一个常见要求是在组水平上匹配的健康个体的可用性,而这可能并不总是容易获得的,特别是在回顾性研究中。在这项工作中,我们提出了一个在没有匹配训练组的情况下对dMRI进行归一化的框架。 方法:我们的框架在使用基于体素的广义线性模型(GLM)控制潜在协变量的同时学习归一化特征。RISH-GLM使我们能够同时对来自任意数量站点的数据进行归一化,同时还能考虑感兴趣的协变量,因此不需要匹配的训练对象。此外,RISH-GLM可以在单个步骤中对来自多个站点的数据进行归一化,而RISH是对每个站点独立进行的。 结果:我们考虑了来自使用三种不同扫描仪采集的回顾性队列中训练对象的数据,并进行了三个复杂度不断增加的归一化实验。首先,我们证明当使用匹配训练对象的数据进行训练时,RISH-GLM等同于传统的RISH。其次,我们证明RISH-GLM可以有效地学习两组高度不匹配对象之间的归一化。第三,我们评估了RISH-GLM同时对来自三个不同站点的数据进行归一化的能力。 结论:RISH-GLM可以从匹配和不匹配的训练对象组中学习跨站点归一化,并且可以有效地用于在单个步骤中对多个站点的数据进行归一化。

相似文献

[1]
Cross-site harmonization of diffusion MRI data without matched training subjects.

Magn Reson Med. 2025-10

[2]
MidRISH: Unbiased harmonization of rotationally invariant harmonics of the diffusion signal.

Magn Reson Imaging. 2024-9

[3]
Style transfer generative adversarial networks to harmonize multisite MRI to a single reference image to avoid overcorrection.

Hum Brain Mapp. 2023-10-1

[4]
Cross-site harmonization of multi-shell diffusion MRI measures based on rotational invariant spherical harmonics (RISH).

Neuroimage. 2022-10-1

[5]
Denoising Improves Cross-Scanner and Cross-Protocol Test-Retest Reproducibility of Diffusion Tensor and Kurtosis Imaging.

Hum Brain Mapp. 2025-3

[6]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[7]
Short-Term Memory Impairment

2025-1

[8]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[9]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[10]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

本文引用的文献

[1]
Lifespan reference curves for harmonizing multi-site regional brain white matter metrics from diffusion MRI.

Sci Data. 2025-5-6

[2]
Neuroimaging standards for research into small vessel disease-advances since 2013.

Lancet Neurol. 2023-7

[3]
Abnormal white matter changes in Alzheimer's disease based on diffusion tensor imaging: A systematic review.

Ageing Res Rev. 2023-6

[4]
Improved sensitivity and precision in multicentre diffusion MRI network analysis using thresholding and harmonization.

Neuroimage Clin. 2022

[5]
Multimodal tract-based MRI metrics outperform whole brain markers in determining cognitive impact of small vessel disease-related brain injury.

Brain Struct Funct. 2022-9

[6]
Cross-site harmonization of multi-shell diffusion MRI measures based on rotational invariant spherical harmonics (RISH).

Neuroimage. 2022-10-1

[7]
Diffusion MRI harmonization enables joint-analysis of multicentre data of patients with cerebral small vessel disease.

Neuroimage Clin. 2021

[8]
Towards multicentre diffusion MRI studies in cerebral small vessel disease.

J Neurol Neurosurg Psychiatry. 2022-1

[9]
Inter-Scanner Harmonization of High Angular Resolution DW-MRI using Null Space Deep Learning.

Comput Diffus MRI. 2019

[10]
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.

Alzheimers Dement. 2021-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索