Suppr超能文献

使用零空间深度学习实现高角分辨率扩散加权磁共振成像的扫描仪间一致性

Inter-Scanner Harmonization of High Angular Resolution DW-MRI using Null Space Deep Learning.

作者信息

Nath Vishwesh, Parvathaneni Prasanna, Hansen Colin B, Hainline Allison E, Bermudez Camilo, Remedios Samuel, Blaber Justin A, Schilling Kurt G, Lyu Ilwoo, Janve Vaibhav, Gao Yurui, Stepniewska Iwona, Rogers Baxter P, Newton Allen T, Davis L Taylor, Luci Jeff, Anderson Adam W, Landman Bennett A

机构信息

EECS, Vanderbilt University, Nashville TN 37203, USA.

Biostatistics, Vanderbilt University, Nashville TN 37203, USA.

出版信息

Comput Diffus MRI. 2019;2019:193-201. Epub 2019 May 3.

Abstract

Diffusion-weighted magnetic resonance imaging (DW-MRI) allows for non-invasive imaging of the local fiber architecture of the human brain at a millimetric scale. Multiple classical approaches have been proposed to detect both single (e.g., tensors) and multiple (e.g., constrained spherical deconvolution, CSD) fiber population orientations per voxel. However, existing techniques generally exhibit low reproducibility across MRI scanners. Herein, we propose a data-driven technique using a neural network design which exploits two categories of data. First, training data were acquired on three squirrel monkey brains using ex-vivo DW-MRI and histology of the brain. Second, repeated scans of human subjects were acquired on two different scanners to augment the learning of the network proposed. To use these data, we propose a new network architecture, the null space deep network (NSDN), to simultaneously learn on traditional observed/truth pairs (e.g., MRI-histology voxels) along with repeated observations without a known truth (e.g., scan-rescan MRI). The NSDN was tested on twenty percent of the histology voxels that were kept completely blind to the network. NSDN significantly improved absolute performance relative to histology by 3.87% over CSD and 1.42% over a recently proposed deep neural network approach. Moreover, it improved reproducibility on the paired data by 21.19% over CSD and 10.09% over a recently proposed deep approach. Finally, NSDN improved generalizability of the model to a third human scanner (which was not used in training) by 16.08% over CSD and 10.41% over a recently proposed deep learning approach. This work suggests that data-driven approaches for local fiber reconstruction are more reproducible, informative and precise and offers a novel, practical method for determining these models.

摘要

扩散加权磁共振成像(DW-MRI)能够在毫米尺度上对人脑的局部纤维结构进行无创成像。已经提出了多种经典方法来检测每个体素中的单一(例如张量)和多个(例如约束球形反卷积,CSD)纤维群方向。然而,现有技术在不同MRI扫描仪之间通常表现出低重现性。在此,我们提出一种使用神经网络设计的数据驱动技术,该技术利用两类数据。首先,使用离体DW-MRI和脑组学在三只松鼠猴脑上采集训练数据。其次,在两台不同的扫描仪上对人类受试者进行重复扫描,以增强所提出网络的学习。为了使用这些数据,我们提出了一种新的网络架构,即零空间深度网络(NSDN),以便同时对传统的观察/真值对(例如MRI-组学体素)以及没有已知真值的重复观察(例如扫描-重扫MRI)进行学习。NSDN在对网络完全保密的20%的组学体素上进行了测试。相对于组学,NSDN的绝对性能相对于CSD显著提高了3.87%,相对于最近提出的深度神经网络方法提高了1.42%。此外,相对于CSD,它在配对数据上的重现性提高了21.19%,相对于最近提出的深度方法提高了10.09%。最后,相对于CSD,NSDN将模型对第三台人类扫描仪(未用于训练)的泛化能力提高了16.08%,相对于最近提出的深度学习方法提高了10.41%。这项工作表明,用于局部纤维重建的数据驱动方法更具重现性、信息性和精确性,并提供了一种确定这些模型的新颖实用方法。

相似文献

2
Harmonizing 1.5T/3T Diffusion Weighted MRI through Development of Deep Learning Stabilized Microarchitecture Estimators.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10949. doi: 10.1117/12.2512902. Epub 2019 Mar 15.
3
Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI.
Magn Reson Imaging. 2019 Oct;62:220-227. doi: 10.1016/j.mri.2019.07.012. Epub 2019 Jul 16.
5
Deep Learning Estimation of Multi-Tissue Constrained Spherical Deconvolution with Limited Single Shell DW-MRI.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11313. doi: 10.1117/12.2549455. Epub 2020 Mar 10.
6
Deep Constrained Spherical Deconvolution for Robust Harmonization.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2654398. Epub 2023 Apr 3.
7
Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network.
Med Phys. 2019 Jul;46(7):3101-3116. doi: 10.1002/mp.13555. Epub 2019 May 11.
9
Histological validation of diffusion MRI fiber orientation distributions and dispersion.
Neuroimage. 2018 Jan 15;165:200-221. doi: 10.1016/j.neuroimage.2017.10.046. Epub 2017 Oct 23.
10
Informed constrained spherical deconvolution (iCSD).
Med Image Anal. 2015 Aug;24(1):269-281. doi: 10.1016/j.media.2015.01.001. Epub 2015 Jan 14.

引用本文的文献

1
Cross-site harmonization of diffusion MRI data without matched training subjects.
Magn Reson Med. 2025 Oct;94(4):1750-1762. doi: 10.1002/mrm.30575. Epub 2025 May 23.
2
Diffusion MRI with Machine Learning.
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00353. Epub 2024 Nov 12.
3
Learning disentangled representations to harmonize connectome network measures.
J Med Imaging (Bellingham). 2025 Jan;12(1):014004. doi: 10.1117/1.JMI.12.1.014004. Epub 2025 Feb 14.
4
Learning site-invariant features of connectomes to harmonize complex network measures.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12930. doi: 10.1117/12.3009645. Epub 2024 Apr 2.
6
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises.
Proc IEEE Inst Electr Electron Eng. 2021 May;109(5):820-838. doi: 10.1109/JPROC.2021.3054390. Epub 2021 Feb 26.
8
Distortion correction of functional MRI without reverse phase encoding scans or field maps.
Magn Reson Imaging. 2023 Nov;103:18-27. doi: 10.1016/j.mri.2023.06.016. Epub 2023 Jul 1.
9
Deep Constrained Spherical Deconvolution for Robust Harmonization.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2654398. Epub 2023 Apr 3.

本文引用的文献

2
Harmonization of multi-site diffusion tensor imaging data.
Neuroimage. 2017 Nov 1;161:149-170. doi: 10.1016/j.neuroimage.2017.08.047. Epub 2017 Aug 18.
3
Comparison of Multi-Fiber Reproducibility of PAS-MRI and Q-ball With Empirical Multiple b-Value HARDI.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10133. doi: 10.1117/12.2254736. Epub 2017 Feb 24.
4
Harmonizing Diffusion MRI Data Across Multiple Sites and Scanners.
Med Image Comput Comput Assist Interv. 2015 Oct;9349:12-19. doi: 10.1007/978-3-319-24553-9_2. Epub 2015 Nov 18.
6
Inter-site and inter-scanner diffusion MRI data harmonization.
Neuroimage. 2016 Jul 15;135:311-23. doi: 10.1016/j.neuroimage.2016.04.041. Epub 2016 Apr 30.
7
Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI.
Neuroimage. 2016 Apr 1;129:185-197. doi: 10.1016/j.neuroimage.2016.01.022. Epub 2016 Jan 21.
8
An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging.
Neuroimage. 2016 Jan 15;125:1063-1078. doi: 10.1016/j.neuroimage.2015.10.019. Epub 2015 Oct 20.
10
Reproducibility and consistency of evaluation techniques for HARDI data.
MAGMA. 2009 Feb;22(1):63-70. doi: 10.1007/s10334-008-0144-0. Epub 2008 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验