Nath Vishwesh, Parvathaneni Prasanna, Hansen Colin B, Hainline Allison E, Bermudez Camilo, Remedios Samuel, Blaber Justin A, Schilling Kurt G, Lyu Ilwoo, Janve Vaibhav, Gao Yurui, Stepniewska Iwona, Rogers Baxter P, Newton Allen T, Davis L Taylor, Luci Jeff, Anderson Adam W, Landman Bennett A
EECS, Vanderbilt University, Nashville TN 37203, USA.
Biostatistics, Vanderbilt University, Nashville TN 37203, USA.
Comput Diffus MRI. 2019;2019:193-201. Epub 2019 May 3.
Diffusion-weighted magnetic resonance imaging (DW-MRI) allows for non-invasive imaging of the local fiber architecture of the human brain at a millimetric scale. Multiple classical approaches have been proposed to detect both single (e.g., tensors) and multiple (e.g., constrained spherical deconvolution, CSD) fiber population orientations per voxel. However, existing techniques generally exhibit low reproducibility across MRI scanners. Herein, we propose a data-driven technique using a neural network design which exploits two categories of data. First, training data were acquired on three squirrel monkey brains using ex-vivo DW-MRI and histology of the brain. Second, repeated scans of human subjects were acquired on two different scanners to augment the learning of the network proposed. To use these data, we propose a new network architecture, the null space deep network (NSDN), to simultaneously learn on traditional observed/truth pairs (e.g., MRI-histology voxels) along with repeated observations without a known truth (e.g., scan-rescan MRI). The NSDN was tested on twenty percent of the histology voxels that were kept completely blind to the network. NSDN significantly improved absolute performance relative to histology by 3.87% over CSD and 1.42% over a recently proposed deep neural network approach. Moreover, it improved reproducibility on the paired data by 21.19% over CSD and 10.09% over a recently proposed deep approach. Finally, NSDN improved generalizability of the model to a third human scanner (which was not used in training) by 16.08% over CSD and 10.41% over a recently proposed deep learning approach. This work suggests that data-driven approaches for local fiber reconstruction are more reproducible, informative and precise and offers a novel, practical method for determining these models.
扩散加权磁共振成像(DW-MRI)能够在毫米尺度上对人脑的局部纤维结构进行无创成像。已经提出了多种经典方法来检测每个体素中的单一(例如张量)和多个(例如约束球形反卷积,CSD)纤维群方向。然而,现有技术在不同MRI扫描仪之间通常表现出低重现性。在此,我们提出一种使用神经网络设计的数据驱动技术,该技术利用两类数据。首先,使用离体DW-MRI和脑组学在三只松鼠猴脑上采集训练数据。其次,在两台不同的扫描仪上对人类受试者进行重复扫描,以增强所提出网络的学习。为了使用这些数据,我们提出了一种新的网络架构,即零空间深度网络(NSDN),以便同时对传统的观察/真值对(例如MRI-组学体素)以及没有已知真值的重复观察(例如扫描-重扫MRI)进行学习。NSDN在对网络完全保密的20%的组学体素上进行了测试。相对于组学,NSDN的绝对性能相对于CSD显著提高了3.87%,相对于最近提出的深度神经网络方法提高了1.42%。此外,相对于CSD,它在配对数据上的重现性提高了21.19%,相对于最近提出的深度方法提高了10.09%。最后,相对于CSD,NSDN将模型对第三台人类扫描仪(未用于训练)的泛化能力提高了16.08%,相对于最近提出的深度学习方法提高了10.41%。这项工作表明,用于局部纤维重建的数据驱动方法更具重现性、信息性和精确性,并提供了一种确定这些模型的新颖实用方法。
Proc SPIE Int Soc Opt Eng. 2019-2
Magn Reson Imaging. 2019-7-16
Proc SPIE Int Soc Opt Eng. 2020-2
Proc SPIE Int Soc Opt Eng. 2023-2
Neuroimage. 2017-10-23
Med Image Anal. 2015-1-14
Magn Reson Med. 2025-10
Imaging Neurosci (Camb). 2024
J Med Imaging (Bellingham). 2025-1
Proc SPIE Int Soc Opt Eng. 2024-2
Proc IEEE Inst Electr Electron Eng. 2021-5
Magn Reson Imaging. 2023-11
Proc SPIE Int Soc Opt Eng. 2023-2
Neuroimage. 2017-8-18
Proc SPIE Int Soc Opt Eng. 2017-2-11
Med Image Comput Comput Assist Interv. 2015-10
Neuroimage. 2016-7-15