Suppr超能文献

腹腔镜肝切除术中基于患者神经的三维-二维配准

Neural patient-specific 3D-2D registration in laparoscopic liver resection.

作者信息

Mhiri Islem, Pizarro Daniel, Bartoli Adrien

机构信息

EnCoV, IP, UMR6602 CNRS/UCA, Clermont-Ferrand, France.

University of Alcalá, Alcalá de Henares, Spain.

出版信息

Int J Comput Assist Radiol Surg. 2025 Jan;20(1):57-64. doi: 10.1007/s11548-024-03231-x. Epub 2024 Jul 16.

Abstract

PURPOSE

Augmented reality guidance in laparoscopic liver resection requires the registration of a preoperative 3D model to the intraoperative 2D image. However, 3D-2D liver registration poses challenges owing to the liver's flexibility, particularly in the limited visibility conditions of laparoscopy. Although promising, the current registration methods are computationally expensive and often necessitate manual initialisation.

METHODS

The first neural model predicting the registration (NM) is proposed, represented as 3D model deformation coefficients, from image landmarks. The strategy consists in training a patient-specific model based on synthetic data generated automatically from the patient's preoperative model. A liver shape modelling technique, which further reduces time complexity, is also proposed.

RESULTS

The NM method was evaluated using the target registration error measure, showing an accuracy on par with existing methods, all based on numerical optimisation. Notably, NM runs much faster, offering the possibility of achieving real-time inference, a significant step ahead in this field.

CONCLUSION

The proposed method represents the first neural method for 3D-2D liver registration. Preliminary experimental findings show comparable performance to existing methods, with superior computational efficiency. These results suggest a potential to deeply impact liver registration techniques.

摘要

目的

腹腔镜肝切除术中的增强现实引导需要将术前三维模型与术中二维图像进行配准。然而,由于肝脏的灵活性,三维到二维的肝脏配准面临挑战,尤其是在腹腔镜有限的可视条件下。尽管目前的配准方法很有前景,但计算成本高昂,且通常需要手动初始化。

方法

提出了首个预测配准的神经模型(NM),通过图像特征点表示为三维模型变形系数。该策略包括基于从患者术前模型自动生成的合成数据训练特定患者模型。还提出了一种肝脏形状建模技术,进一步降低了时间复杂度。

结果

使用目标配准误差度量对NM方法进行评估,结果表明其准确性与现有基于数值优化的方法相当。值得注意的是,NM运行速度快得多,具备实现实时推理的可能性,这在该领域向前迈出了重要一步。

结论

所提出的方法是首个用于三维到二维肝脏配准的神经方法。初步实验结果表明其性能与现有方法相当,但计算效率更高。这些结果表明该方法有可能对肝脏配准技术产生深远影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验