Suppr超能文献

泥炭多糖的酶促糖化受到可及性的限制。

Enzymatic saccharification of peat polysaccharides is limited by accessibility.

作者信息

Thomsen Jonas, Lett Signe, Martens Helle J, Sørensen Helle, Kelleher Darragh, Tryfona Theodora, Dupree Paul, Johansen Katja S

机构信息

Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark.

Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, København, Denmark.

出版信息

PLoS One. 2025 May 23;20(5):e0312219. doi: 10.1371/journal.pone.0312219. eCollection 2025.

Abstract

Sphagnum peat bogs store a large fraction of biologically-bound carbon, due to a steady accumulation of plant material over millennia. The resistance of Sphagnum biomass to decay is poorly understood and of high importance for preservation efforts and climate models. Sphagnum peat mostly consists of the polysaccharide-rich cell wall of the moss but the mechanisms by which it resist degradation by microbes remain unclear. Here we show that enzymatic saccharification of peat polysaccharides including cellulose and other glucose-rich polysaccharides is predominantly limited by access to the substrate. The experimental approach involved biotechnological tools including hydrothermal pretreatment to disrupt and relocate cell wall components. This physical change was confirmed by confocal laser scanning microscopy. A cocktail of microbial enzymes (Cellic® CTec3) designed for industrial saccharification of lignocellulose of vascular plants was used to assess enzymatic digestibility of peat polysaccharides. The glucose yield increased from close to zero for untreated peat to 30% and 50% when pretreated at 160 and 180 °C. An overall catalytic rate constant for enzymatic glucose-release from peat-cellulose of 26.98 h-1 was calculated using a kinetic model. This is a similar or higher rate compared to cellulose from vascular plant tissues. With an iron content of 2 g/kg dry peat, oxidative inactivation of enzymes is an important factor to take into account. A high inactivation constant of 125.91 x10-3 h-1 was found for the used saccharification conditions, but the addition of catalase alleviated the oxidative inactivation and increased the glucose yield with 60% in peat pretreated at 180 °C. These findings show that molecular structures of Sphagnum peat which prevents access for cell wall degrading enzymes can be disrupted by hydrothermal pretreatment. This brings us closer to understanding peat recalcitrance and thus how very large amounts of organic carbon is stored.

摘要

由于数千年来植物物质的稳定积累,泥炭藓泥炭沼泽储存了很大一部分生物结合碳。泥炭藓生物质对腐烂的抗性了解甚少,但对于保护工作和气候模型非常重要。泥炭藓泥炭主要由苔藓富含多糖的细胞壁组成,但其抵抗微生物降解的机制仍不清楚。在这里,我们表明,包括纤维素和其他富含葡萄糖的多糖在内的泥炭多糖的酶促糖化主要受底物可及性的限制。实验方法涉及生物技术工具,包括水热预处理以破坏和重新定位细胞壁成分。通过共聚焦激光扫描显微镜证实了这种物理变化。一种设计用于维管植物木质纤维素工业糖化的微生物酶混合物(Cellic® CTec3)用于评估泥炭多糖的酶促消化率。葡萄糖产量从未经处理的泥炭接近零增加到在160和180°C预处理时的30%和50%。使用动力学模型计算了从泥炭纤维素中酶促释放葡萄糖的总体催化速率常数为26.98 h-1。与维管植物组织中的纤维素相比,这是一个相似或更高的速率。由于干泥炭中铁含量为2 g/kg,酶的氧化失活是一个需要考虑的重要因素。在所使用的糖化条件下发现了125.91×10-3 h-1的高失活常数,但添加过氧化氢酶减轻了氧化失活,并使在180°C预处理的泥炭中的葡萄糖产量提高了60%。这些发现表明,阻碍细胞壁降解酶进入的泥炭藓泥炭分子结构可以通过水热预处理来破坏。这使我们更接近于理解泥炭的顽固性,从而了解大量有机碳是如何储存的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d63/12101845/3ea081026d89/pone.0312219.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验