Suppr超能文献

氧化还原过程使蒸汽预处理的木质纤维素生物质酸化并脱羧,且受LPMO和过氧化氢酶调节。

Redox processes acidify and decarboxylate steam-pretreated lignocellulosic biomass and are modulated by LPMO and catalase.

作者信息

Peciulyte Ausra, Samuelsson Louise, Olsson Lisbeth, McFarland K C, Frickmann Jesper, Østergård Lars, Halvorsen Rune, Scott Brian R, Johansen Katja S

机构信息

1Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.

2Novozymes Inc., 1445 Drew Ave, Davis, CA 95618 USA.

出版信息

Biotechnol Biofuels. 2018 Jun 18;11:165. doi: 10.1186/s13068-018-1159-z. eCollection 2018.

Abstract

BACKGROUND

The bioconversion of lignocellulosic feedstocks to ethanol is being commercialised, but further process development is required to improve their economic feasibility. Efficient saccharification of lignocellulose to fermentable sugars requires oxidative cleavage of glycosidic linkages by lytic polysaccharide monooxygenases (LPMOs). However, a proper understanding of the catalytic mechanism of this enzyme class and the interaction with other redox processes associated with the saccharification of lignocellulose is still lacking. The in-use stability of LPMO-containing enzyme cocktails is increased by the addition of catalase implying that hydrogen peroxide (HO) is generated in the slurry during incubation. Therefore, we sought to characterize the effects of enzymatic and abiotic sources of HO on lignocellulose hydrolysis to identify parameters that could improve this process. Moreover, we studied the abiotic redox reactions of steam-pretreated wheat straw as a function of temperature and dry-matter (DM) content.

RESULTS

Abiotic reactions in pretreated wheat straw consume oxygen, release carbon dioxide (CO) to the slurry, and decrease the pH. The magnitude of these reactions increased with temperature and with DM content. The presence of LPMO during saccharification reduced the amount of CO liberated, while the effect on pH was insignificant. Catalase led to increased decarboxylation through an unknown mechanism. Both in situ-generated and added HO caused a decrease in pH.

CONCLUSIONS

Abiotic redox processes similar to those that occur in natural water-logged environments also affect the saccharification of pretreated lignocellulose. Heating of the lignocellulosic material and adjustment of pH trigger rapid oxygen consumption and acidification of the slurry. In industrial settings, it will be of utmost importance to control these processes. LPMOs interact with the surrounding redox compounds and redirect abiotic electron flow from decarboxylating reactions to fuel the oxidative cleavage of glycosidic bonds in cellulose.

摘要

背景

木质纤维素原料向乙醇的生物转化正在商业化,但仍需要进一步的工艺开发以提高其经济可行性。将木质纤维素高效糖化转化为可发酵糖需要通过裂解多糖单加氧酶(LPMO)氧化裂解糖苷键。然而,目前仍缺乏对这类酶催化机制以及与木质纤维素糖化相关的其他氧化还原过程相互作用的充分理解。添加过氧化氢酶可提高含LPMO酶混合物在使用中的稳定性,这意味着在孵育过程中浆料中会产生过氧化氢(HO)。因此,我们试图表征HO的酶促来源和非生物来源对木质纤维素水解的影响,以确定可改善该过程的参数。此外,我们研究了蒸汽预处理小麦秸秆的非生物氧化还原反应随温度和干物质(DM)含量的变化情况。

结果

预处理小麦秸秆中的非生物反应消耗氧气,向浆料中释放二氧化碳(CO),并降低pH值。这些反应的程度随温度和DM含量的增加而增大。糖化过程中LPMO的存在减少了CO的释放量,而对pH值的影响不显著。过氧化氢酶通过未知机制导致脱羧作用增强。原位生成的HO和添加的HO都会导致pH值下降。

结论

类似于天然水淹环境中发生的非生物氧化还原过程也会影响预处理木质纤维素的糖化。木质纤维素材料的加热和pH值的调节会引发氧气的快速消耗和浆料的酸化。在工业环境中,控制这些过程至关重要。LPMO与周围的氧化还原化合物相互作用,将非生物电子流从脱羧反应中转移出来,为纤维素中糖苷键的氧化裂解提供能量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cb3/6004669/ff9afcb2a7ee/13068_2018_1159_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验