Shen Tianjin, Tai Wenjiao, Jiang Dongfang, Ma Shuaipeng, Zhong Xiaoling, Zou Yuhua, Zhang Chun-Li
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Neuron. 2025 Jul 9;113(13):2176-2195.e10. doi: 10.1016/j.neuron.2025.04.033. Epub 2025 May 22.
Reactive gliosis is a hallmark of neuropathology and offers a potential target for addressing numerous neurological diseases. Here, we show that growth arrest and DNA damage inducible gamma (GADD45G), a stress sensor in astrocytes, is a nodal orchestrator of reactive gliosis and neurodegeneration. GADD45G expression in astrocytes is sufficient to incite astrogliosis, microgliosis, synapse loss, compromised animal behavior, and the aggravation of Alzheimer's disease (AD). Conversely, silencing GADD45G specifically in astrocytes preserves synapses and rescues the histological and behavioral phenotypes of AD. Mechanistically, GADD45G controls the mitogen-activated protein kinase kinase kinase 4 (MAP3K4) and neuroimmune signaling pathways, including nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF3), leading to profound molecular changes and the secretion of various factors that regulate both cell-autonomous and cell-nonautonomous reactive gliosis and glia-neuron interactions. These results uncover GADD45G signaling as a promising therapeutic target for AD and potentially for numerous other neurological disorders.
反应性胶质增生是神经病理学的一个标志,为解决众多神经系统疾病提供了一个潜在靶点。在此,我们表明,作为星形胶质细胞中的一种应激传感器,生长停滞和DNA损伤诱导蛋白γ(GADD45G)是反应性胶质增生和神经退行性变的关键协调因子。星形胶质细胞中GADD45G的表达足以引发星形胶质细胞增生、小胶质细胞增生、突触丧失、动物行为受损以及阿尔茨海默病(AD)病情加重。相反,特异性沉默星形胶质细胞中的GADD45G可保留突触,并挽救AD的组织学和行为表型。从机制上讲,GADD45G控制丝裂原活化蛋白激酶激酶激酶4(MAP3K4)和神经免疫信号通路,包括核因子κB(NF-κB)和干扰素调节因子3(IRF3),导致深刻的分子变化以及多种调节细胞自主和非自主反应性胶质增生以及胶质细胞-神经元相互作用的因子的分泌。这些结果揭示了GADD45G信号传导作为AD以及可能众多其他神经系统疾病的一个有前景的治疗靶点。