Suppr超能文献

磷酸化与DNA损伤修复协同促进体内SOX2介导的重编程。

Phosphorylation and DNA Damage Resolution Coordinate SOX2-Mediated Reprogramming in vivo.

作者信息

Zhong Xiaoling, Zou Yuhua, Zhang Chun-Li

机构信息

Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

bioRxiv. 2025 Jul 19:2025.07.15.664998. doi: 10.1101/2025.07.15.664998.

Abstract

The stem cell factor SOX2 can reprogram resident glial cells into neurons in the adult mammalian central nervous system (CNS), but the molecular mechanisms underlying this process remain poorly understood. Here, we show that both SOX2 phosphorylation and the PRKDC-dependent non-homologous end joining (NHEJ) pathway are essential for SOX2-mediated in vivo glia-to-neuron reprogramming. A phospho-mimetic SOX2 mutant significantly enhances reprogramming efficiency without altering neuronal fate. Conversely, loss of PRKDC or knockdown of core NHEJ components KU80 and LIG4 abolishes reprogramming. Notably, p53 knockdown restores reprogramming in PRKDC-deficient mice. These findings demonstrate that SOX2-driven glial reprogramming requires both precise posttranslational regulation and effective DNA damage repair, and suggest that targeting these pathways could enhance regenerative strategies in the CNS.

摘要

干细胞因子SOX2可将成年哺乳动物中枢神经系统(CNS)中的驻留神经胶质细胞重编程为神经元,但这一过程背后的分子机制仍知之甚少。在此,我们表明SOX2磷酸化和PRKDC依赖的非同源末端连接(NHEJ)途径对于SOX2介导的体内神经胶质细胞向神经元的重编程至关重要。一种磷酸模拟SOX2突变体可显著提高重编程效率,而不改变神经元命运。相反,PRKDC缺失或核心NHEJ组分KU80和LIG4的敲低会消除重编程。值得注意的是,p53敲低可恢复PRKDC缺陷小鼠的重编程。这些发现表明,SOX2驱动的神经胶质细胞重编程需要精确的翻译后调控和有效的DNA损伤修复,并表明靶向这些途径可增强CNS中的再生策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb38/12338629/832142dca2f4/nihpp-2025.07.15.664998v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验