Suppr超能文献

一种基于数据驱动的评估乙型肝炎母婴传播风险预测模型的方法:机器学习视角

A Data-Driven Approach to Assessing Hepatitis B Mother-to-Child Transmission Risk Prediction Model: Machine Learning Perspective.

作者信息

Nguyen Tien Dung, Thi Thu Bui Huong, Hoang Thi Ngoc Tram, Thi Pham Thuy, Trung Nguyen Dac, Nguyen Thi Thu Huyen, Thu Hang Vu Thi, Lan Anh Luong Thi, Thu Hoang Lan, Cam Tu Ho, Körber Nina, Bauer Tanja, Khanh Ho Lam

机构信息

Department of Microbiology, Thai Nguyen University of Medicine and Pharmacy, Thái Nguyên, Vietnam.

Department of Immunology - Molecular Genetics, Thai Nguyen National General Hospital, Thái Nguyên, Vietnam.

出版信息

JMIR Form Res. 2025 May 23;9:e69838. doi: 10.2196/69838.

Abstract

BACKGROUND

Hepatitis B virus (HBV) can be transmitted from mother to child either through transplacental infection or via blood-to-blood contact during or immediately after delivery. Early and accurate risk assessments are essential for guiding clinical decisions and implementing effective preventive measures. Data mining techniques are powerful tools for identifying key predictors in medical diagnostics.

OBJECTIVE

This study aims to develop a robust predictive model for mother-to-child transmission (MTCT) of HBV using decision tree algorithms, specifically Iterative Dichotomiser 3 (ID3) and classification and regression trees (CART). The study identifies clinically and paraclinically relevant predictors, particularly hepatitis B e antigen (HBeAg) status and peripheral blood mononuclear cell (PBMC) concentration, for effective risk stratification and prevention. Additionally, we will assess the model's reliability and generalizability through cross-validation with various training-test split ratios, aiming to enhance its applicability in clinical settings and inform improved preventive strategies against HBV MTCT.

METHODS

This study used decision tree algorithms-ID3 and CART-on a data set of 60 hepatitis B surface antigen (HBsAg)-positive pregnant women. Samples were collected either before or at the time of delivery, enabling the inclusion of patients who were undiagnosed or had limited access to treatment. We analyzed both clinical and paraclinical parameters, with a particular focus on HBeAg status and PBMC concentration. Additional biochemical markers were evaluated for their potential contributory or inhibitory effects on MTCT risk. The predictive models were validated using multiple training-test split ratios to ensure robustness and generalizability.

RESULTS

Our analysis showed that 20 out of 48 (based on a split ratio of 0.8 from a total of 60 cases, 42%) to 27 out of 57 (based on a split ratio of 0.95 from a total of 60 cases, 47%) training cases with HBeAg-positive status were associated with a significant risk of MTCT of HBV (χ=21.16, P=.007, df=8). Among HBeAg-negative women, those with PBMC concentrations ≥8 × 10 cells/mL exhibited a low risk of MTCT, whereas individuals with PBMC concentrations <8 × 10 cells/mL demonstrated a negligible risk. Across all training-test split ratios, the decision tree models consistently identified HBeAg status and PBMC concentration as the most influential predictors, underscoring their robustness and critical role in MTCT risk stratification.

CONCLUSIONS

This study demonstrates that decision tree models are effective tools for stratifying the risk of MTCT of HBV by integrating key clinical and paraclinical markers. Among these, HBeAg status and PBMC concentration emerged as the most critical predictors. While the analysis focused on untreated patients, it provides a strong foundation for future investigations involving treated populations. These findings offer actionable insights to support the development of more targeted and effective HBV MTCT prevention strategies.

摘要

背景

乙型肝炎病毒(HBV)可通过胎盘感染或在分娩期间或分娩后立即通过血液与血液接触从母亲传播给孩子。早期准确的风险评估对于指导临床决策和实施有效的预防措施至关重要。数据挖掘技术是在医学诊断中识别关键预测因素的强大工具。

目的

本研究旨在使用决策树算法,特别是迭代二分法3(ID3)和分类与回归树(CART),开发一种强大的HBV母婴传播(MTCT)预测模型。该研究确定临床和临床旁相关的预测因素,特别是乙肝e抗原(HBeAg)状态和外周血单个核细胞(PBMC)浓度,以进行有效的风险分层和预防。此外,我们将通过使用各种训练-测试分割比例进行交叉验证来评估模型的可靠性和通用性,旨在提高其在临床环境中的适用性,并为改进HBV MTCT的预防策略提供依据。

方法

本研究使用决策树算法ID3和CART,对60例乙肝表面抗原(HBsAg)阳性孕妇的数据集进行分析。样本在分娩前或分娩时采集,从而纳入未被诊断或难以获得治疗的患者。我们分析了临床和临床旁参数,特别关注HBeAg状态和PBMC浓度。还评估了其他生化标志物对MTCT风险的潜在促进或抑制作用。使用多种训练-测试分割比例对预测模型进行验证,以确保其稳健性和通用性。

结果

我们的分析表明,在48例训练病例中(基于从60例病例中按0.8的分割比例,即42%),有20例HBeAg阳性状态的病例与HBV MTCT的显著风险相关;在57例训练病例中(基于从60例病例中按0.95的分割比例,即47%),有27例与HBV MTCT的显著风险相关(χ=21.16,P=.007,自由度=8)。在HBeAg阴性的女性中,PBMC浓度≥8×10细胞/mL的个体MTCT风险较低,而PBMC浓度<8×10细胞/mL的个体MTCT风险可忽略不计。在所有训练-测试分割比例中,决策树模型始终将HBeAg状态和PBMC浓度确定为最具影响力的预测因素,强调了它们在MTCT风险分层中的稳健性和关键作用。

结论

本研究表明,决策树模型是通过整合关键临床和临床旁标志物对HBV MTCT风险进行分层的有效工具。其中,HBeAg状态和PBMC浓度是最关键的预测因素。虽然分析聚焦于未治疗的患者,但为未来涉及治疗人群的研究提供了坚实基础。这些发现提供了可操作的见解,以支持制定更具针对性和有效的HBV MTCT预防策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d80e/12144481/04ff1f30b813/formative_v9i1e69838_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验