Suppr超能文献

应答者分析方法模拟研究及模拟性能报告的完整性:一项方法学调查

Completeness of reporting of simulation studies on responder analysis methods and simulation performance: a methodological survey.

作者信息

Chu Xiajing, Chu Derek K, Ren Junjie, Brignardello-Petersen Romina, Yang Kehu, Guyatt Gordon H, Lehana Thabane

机构信息

Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada

Evidence in Allergy Group, McMaster University, Hamilton, Ontario, Canada.

出版信息

BMJ Open. 2025 May 23;15(5):e096107. doi: 10.1136/bmjopen-2024-096107.

Abstract

OBJECTIVES

To evaluate the completeness of reporting of simulation studies on responder analysis methods and simulation performance.

DESIGN

Systematic methodological survey.

DATA SOURCES

We searched Embase, MEDLINE (via Ovid), PubMed and Web of Science Core Collection from inception to 9 October 2023.

ELIGIBILITY CRITERIA

We included simulation studies comparing responder analysis methods and assessing simulation performance (bias, accuracy, precision or variance, power, type I and II errors and coverage).

DATA EXTRACTION AND SYNTHESIS

Two independent reviewers extracted data and assessed simulation performance. We used descriptive analyses to summarise reporting quality and simulation performance.

RESULTS

We identified seven simulation studies exploring augmented binary methods, distributional methods and model-based methods. No studies reported the starting seed, occurrence of failures during simulations, the random number generator used and the number of simulations. No studies reported simulation accuracy. Responder analysis results were not significantly influenced by covariate adjustment. Distributional methods remained adaptable even with skewed data. Compared with standard binary methods, augmented binary methods generated increased power and precision. When the threshold is in the tail of the distribution, a simple asymptotic Bayesian (SAB) distributional approach may not reduce uncertainty but can improve precision.

CONCLUSION

Simulation studies comparing responder analysis methods exhibit suboptimal reporting quality. Compared with standard binary methods, augmented binary methods, distributional methods and model-based methods may be better choices, but there is no best one.

摘要

目的

评估关于反应者分析方法和模拟性能的模拟研究报告的完整性。

设计

系统的方法学调查。

数据来源

我们检索了从数据库建立到2023年10月9日的Embase、MEDLINE(通过Ovid)、PubMed和Web of Science核心合集。

纳入标准

我们纳入了比较反应者分析方法并评估模拟性能(偏差、准确性、精密度或方差、效能、I型和II型错误以及覆盖率)的模拟研究。

数据提取与综合

两名独立的审阅者提取数据并评估模拟性能。我们使用描述性分析来总结报告质量和模拟性能。

结果

我们确定了七项探索增强二元方法、分布方法和基于模型方法的模拟研究。没有研究报告起始种子、模拟过程中失败的发生情况、使用的随机数生成器以及模拟次数。没有研究报告模拟准确性。协变量调整对反应者分析结果没有显著影响。即使数据存在偏态,分布方法仍然适用。与标准二元方法相比,增强二元方法产生了更高的效能和精密度。当阈值处于分布尾部时,简单渐近贝叶斯(SAB)分布方法可能不会降低不确定性,但可以提高精密度。

结论

比较反应者分析方法的模拟研究报告质量欠佳。与标准二元方法相比,增强二元方法、分布方法和基于模型的方法可能是更好的选择,但没有最佳方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d49/12104902/739744066409/bmjopen-15-5-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验