Puangpathumanond Suppanat, Chee Heng Li, Sevencan Cansu, Yang Xin, Lau On Sun, Lew Tedrick Thomas Salim
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
Institute of Materials Research and Engineering, Agency of Science, Technology and Research, Singapore, Singapore.
Nat Commun. 2025 May 23;16(1):4816. doi: 10.1038/s41467-025-60112-w.
Plant pathogens significantly threaten food security and agricultural sustainability, with climate change expected to exacerbate outbreaks. Despite these growing threats, current agrochemical delivery remains untargeted and inefficient. In this study, we develop surface ligand-engineered nanoparticles for targeted delivery to stomata (SENDS), a nanocarrier system designed to target stomatal guard cells, which serve as key pathogen entry points into the plant apoplast. Our approach employs rational ligand engineering of porous nanoparticles, optimizing ligand orientation for efficient stomata targeting across different plant species. Foliar application of SENDS encapsulating an antimicrobial plant alkaloid reduces colonization of Xanthomonas campestris, a major crop pathogen, by 20-fold compared to untargeted nanocarriers. Quantitative assessment of stomatal aperture movement and photosynthetic performance confirms that SENDS enhance plant defense against invading pathogens without disrupting natural stomatal function. This nanobiotechnology approach provides a targeted strategy to improve plant disease resistance, offering new insights into nanocarrier design for more resilient and sustainable agriculture.
植物病原体严重威胁粮食安全和农业可持续性,预计气候变化会加剧病害爆发。尽管存在这些日益增长的威胁,但目前的农用化学品递送仍缺乏针对性且效率低下。在本研究中,我们开发了用于靶向递送至气孔的表面配体工程纳米颗粒(SENDS),这是一种设计用于靶向保卫细胞的纳米载体系统,保卫细胞是病原体进入植物质外体的关键入口。我们的方法采用了对多孔纳米颗粒进行合理的配体工程,优化配体取向以在不同植物物种中高效靶向气孔。与非靶向纳米载体相比,叶面喷施包裹抗菌植物生物碱的SENDS可使主要作物病原体野油菜黄单胞菌的定殖减少20倍。对气孔孔径运动和光合性能的定量评估证实,SENDS可增强植物对入侵病原体的防御能力,同时不会破坏自然气孔功能。这种纳米生物技术方法提供了一种提高植物抗病性的靶向策略,为设计更具韧性和可持续性的农业纳米载体提供了新见解。