Suppr超能文献

使用可回收的基于氧化铁的磁性纳米催化剂创新合成抗菌贝纳利化合物。

Innovative synthesis of antimicrobial Biginelli compounds using a recyclable iron oxide-based magnetic nanocatalyst.

作者信息

Taravati Araz, Nouri Mojtaba, Poursattar Marjani Ahmad, Akbari Dilmaghani Karim

机构信息

Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.

出版信息

Sci Rep. 2025 May 23;15(1):17909. doi: 10.1038/s41598-025-02179-5.

Abstract

The present study presents the synthesis and application of a new, magnetically separable nanocatalyst, FeO@PEG@CPTMS@dithizone-Ag (FPCD-Ag), with a high stability and recyclability design. In the preparation of this catalyst through a core-shell approach, FeO acted as the magnetic core, modified by a coating of polyethylene glycol, functionalized with 3-chloropropyl-trimethoxysilane and dithizone for the immobilization of Ag metal on its surface. Comprehensive characterization was performed by SEM, FT-IR, BET, XRD, EDS-MAP, TEM, LSV, and TGA to confirm its structure and composition. The synthesized nanocatalyst was employed for the assessment of its catalytic efficiency in the one-pot synthesis of twenty-eight 3,4-dihydropyrimidin-2(1H)-ones/thiones through a multicomponent cyclo-condensation reaction involving various aldehydes, β-dicarbonyl compounds, and thiourea/urea. The structure of the resulting compounds was confirmed by IR, H-, and C- NMR spectroscopy, and their antibacterial activity was determined against Staphylococcus aureus ATCC25923, Acinetobacter calcoaceticus ATCC23055, Escherichia coli ATCC25922, and Pseudomonas aeruginosa ATCC27853 with most of the compounds showing significant activities. The nanocatalyst showed excellent recyclability, maintaining high stability and catalytic efficiency for up to six cycles with minimal activity loss. In these cases, the optimization studies determined the best conditions of a 30 mg catalyst with a water-ethanol solvent system in a 1:1 mL ratio, providing a 97% yield in a very short period of 20 min. This paper outlines the following advantages of this catalyst, including ease of separation without centrifugation, readily available starting materials and cost-effective, environmentally benign, quick reaction, and excellent product yield, hence offering a green methodology for efficient synthesis of the antimicrobial compounds.

摘要

本研究介绍了一种新型的、具有磁分离功能的纳米催化剂FeO@PEG@CPTMS@双硫腙 - 银(FPCD - Ag)的合成与应用,该催化剂具有高稳定性和可回收性设计。在通过核壳法制备这种催化剂的过程中,FeO作为磁核,用聚乙二醇涂层进行改性,再用3 - 氯丙基 - 三甲氧基硅烷和双硫腙进行功能化,以便将Ag金属固定在其表面。通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT - IR)、比表面积分析(BET)、X射线衍射(XRD)、能谱分析 - 图谱(EDS - MAP)、透射电子显微镜(TEM)、线性扫描伏安法(LSV)和热重分析(TGA)进行了全面表征,以确认其结构和组成。所合成的纳米催化剂用于通过多组分环缩合反应一锅法合成28种3,4 - 二氢嘧啶 - 2(1H) - 酮/硫酮,评估其催化效率,该反应涉及各种醛、β - 二羰基化合物和硫脲/尿素。通过红外光谱(IR)、氢核磁共振(H - NMR)和碳核磁共振(C - NMR)光谱确认了所得化合物的结构,并测定了它们对金黄色葡萄球菌ATCC25923、醋酸钙不动杆菌ATCC23055、大肠杆菌ATCC25922和铜绿假单胞菌ATCC27853的抗菌活性,大多数化合物表现出显著活性。该纳米催化剂显示出优异的可回收性,在高达六个循环中保持高稳定性和催化效率,活性损失最小。在这些情况下,优化研究确定了最佳条件为30 mg催化剂与水 - 乙醇溶剂体系,比例为1:1 mL,在非常短的20分钟内提供97%的产率。本文概述了这种催化剂的以下优点,包括无需离心即可轻松分离、起始材料容易获得且成本效益高、环境友好、反应迅速以及产品产率优异,因此为高效合成抗菌化合物提供了一种绿色方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验