Ma Ziqi, Huang Jianbin, Zhang Xiangdong, Luo Yong, Dou Tingfeng, Ding Minghu
School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, 101408, China.
Sci Data. 2025 May 23;12(1):847. doi: 10.1038/s41597-025-05175-6.
Gridded surface air temperature (SAT) data for Antarctica is a crucial foundation for studying climate change in the region. However, significant discrepancies exist between the available Antarctic gridded temperature datasets, particularly regarding the spatial distribution characteristics of long-term temperature trends. In this paper, we develop a new, regularly updated, spatio-temporally complete Antarctic monthly SAT dataset from 1979 onwards, with a spatial resolution of 1° x 1° in latitude and longitude, from multiple sources of in situ observations using deep learning method. Deep learning model was trained with daily SATs from three global reanalysis datasets. The reconstructed Antarctic SATs were successfully validated using data from staffed and automated meteorological stations, demonstrating a closer match with observations, particularly in capturing the patterns of temperature trends. This dataset represents a new advance in the development of Antarctic observational climate dataset and is an important resource that underpins research across diverse scientific disciplines, facilitating a deeper understanding of the Antarctic climate system and its global implications.
南极地区的网格化地面气温(SAT)数据是研究该地区气候变化的关键基础。然而,现有的南极网格化温度数据集之间存在显著差异,特别是在长期温度趋势的空间分布特征方面。在本文中,我们利用深度学习方法,从多个原位观测数据源开发了一个新的、定期更新的、时空完整的1979年以来的南极月度SAT数据集,其纬度和经度的空间分辨率为1°×1°。深度学习模型使用来自三个全球再分析数据集的每日SAT进行训练。利用有人值守和自动气象站的数据成功验证了重建的南极SAT,结果表明其与观测值的匹配度更高,尤其是在捕捉温度趋势模式方面。该数据集代表了南极观测气候数据集发展的一项新进展,是支撑跨多种科学学科研究的重要资源,有助于更深入地了解南极气候系统及其全球影响。