Desai Karishma Madhusudan, Singh Pragya, Smriti Mahima, Talwar Vivek, Chaudhary Manav, Paul George, Kolli Subhas Chandra, Raghava Parisa Sai, Krishna Golla Vamshi, Jawahar C V, Vinod P K, Konala Varma, Sethuraman Ramanathan
Tokyo Dental College, 2 Chome-9-18 Misakicho, Chiyoda City, Tokyo, 101-0061, Japan.
INAI, International Institute of Information Technology, Hyderabad, 500032, India.
Sci Rep. 2025 May 23;15(1):17949. doi: 10.1038/s41598-025-02802-5.
Oral cancer though preventable, shows high mortality and affect the overall quality of life when detected in late stages. Screening techniques that enable early diagnosis are the need of the hour. The present work aims to evaluate the effectiveness of AI screening tools in the diagnosis of OPMDs and Oral cancers via native or web-application (cloud) using smart phone devices. We trained and tested two deep learning models namely DenseNet201 and FixCaps using 518 images of the oral cavity. While DenseNet201 is a pre-trained model, we modified the FixCaps model from capsule network and trained it ground up. Standardized protocols were used to annotate and classify the lesions (suspicious vs. non-suspicious). In terms of model performance, DenseNet201 achieved an F1 score of 87.50% and AUC of 0.97; while FixCaps exhibited F1 score of 82.8% and AUC of 0.93. DenseNet201 model (20 M) serves as a robust screening model (accuracy 88.6%) that can be hosted on a web-application in the cloud servers; while the adapted FixCaps model with its low parameter size of 0.83 M exhibits comparable accuracy (83.8%) allowing easy transitioning into a native phone-based screening application.
口腔癌虽然可以预防,但死亡率很高,且在晚期被发现时会影响整体生活质量。能够实现早期诊断的筛查技术是当务之急。目前的工作旨在评估人工智能筛查工具通过智能手机设备使用原生应用程序或网络应用程序(云)诊断口腔潜在恶性疾病和口腔癌的有效性。我们使用518张口腔图像训练并测试了两个深度学习模型,即DenseNet201和FixCaps。虽然DenseNet201是一个预训练模型,但我们对来自胶囊网络的FixCaps模型进行了修改并从头开始训练。使用标准化协议对病变进行标注和分类(可疑与非可疑)。在模型性能方面,DenseNet201的F1分数为87.50%,AUC为0.97;而FixCaps的F1分数为82.8%,AUC为0.93。DenseNet201模型(20M)是一个强大的筛查模型(准确率88.6%),可以托管在云服务器的网络应用程序上;而经过改编的FixCaps模型参数大小低至0.83M,表现出相当的准确率(83.8%),便于轻松转换为基于原生手机的筛查应用程序。