Miao Jiacheng, Song Gefei, Wu Yixuan, Hu Jiaxin, Wu Yuchang, Basu Shubhashrita, Andrews James S, Schaumberg Katherine, Fletcher Jason M, Schmitz Lauren L, Lu Qiongshi
Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
University of Wisconsin-Madison, Madison, WI, USA.
Nat Hum Behav. 2025 May 23. doi: 10.1038/s41562-025-02202-9.
Understanding gene-environment interaction (GxE) is crucial for deciphering the genetic architecture of human complex traits. However, current statistical methods for GxE inference face challenges in both scalability and interpretability. Here we introduce PIGEON-a unified statistical framework for quantifying polygenic GxE using a variance component analytical approach. Based on this framework, we outline the main objectives in GxE studies and introduce an estimation procedure that requires only summary statistics data as input. We demonstrate the effectiveness of PIGEON through theoretical and empirical analyses, including a quasi-experimental gene-by-education study of health outcomes and gene-by-sex interaction for 530 traits using UK Biobank. We also identify genetic interactors that explain the treatment effect heterogeneity in a clinical trial on smoking cessation. PIGEON suggests a path towards polygenic, summary statistics-based inference in future GxE studies.
理解基因-环境相互作用(GxE)对于解读人类复杂性状的遗传结构至关重要。然而,当前用于GxE推断的统计方法在可扩展性和可解释性方面都面临挑战。在此,我们引入了PIGEON——一种使用方差成分分析方法来量化多基因GxE的统一统计框架。基于此框架,我们概述了GxE研究的主要目标,并介绍了一种仅需汇总统计数据作为输入的估计程序。我们通过理论和实证分析证明了PIGEON的有效性,包括一项关于健康结果的准实验性基因与教育研究,以及使用英国生物银行对530个性状进行的基因与性别的相互作用研究。我们还在一项戒烟临床试验中识别出了解释治疗效果异质性的基因相互作用因子。PIGEON为未来的GxE研究提供了一条基于多基因汇总统计推断的途径。