Suppr超能文献

一种分位数积分线性模型,用于量化遗传效应对表型变异性的影响。

A quantile integral linear model to quantify genetic effects on phenotypic variability.

机构信息

Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI 53706.

Baylor College of Medicine, Houston, TX 77030.

出版信息

Proc Natl Acad Sci U S A. 2022 Sep 27;119(39):e2212959119. doi: 10.1073/pnas.2212959119. Epub 2022 Sep 19.

Abstract

Detecting genetic variants associated with the variance of complex traits, that is, variance quantitative trait loci (vQTLs), can provide crucial insights into the interplay between genes and environments and how they jointly shape human phenotypes in the population. We propose a quantile integral linear model (QUAIL) to estimate genetic effects on trait variability. Through extensive simulations and analyses of real data, we demonstrate that QUAIL provides computationally efficient and statistically powerful vQTL mapping that is robust to non-Gaussian phenotypes and confounding effects on phenotypic variability. Applied to UK Biobank ( = 375,791), QUAIL identified 11 vQTLs for body mass index (BMI) that have not been previously reported. Top vQTL findings showed substantial enrichment for interactions with physical activities and sedentary behavior. Furthermore, variance polygenic scores (vPGSs) based on QUAIL effect estimates showed superior predictive performance on both population-level and within-individual BMI variability compared to existing approaches. Overall, QUAIL is a unified framework to quantify genetic effects on the phenotypic variability at both single-variant and vPGS levels. It addresses critical limitations in existing approaches and may have broad applications in future gene-environment interaction studies.

摘要

检测与复杂性状变异相关的遗传变异,即方差数量性状基因座(vQTL),可以深入了解基因和环境之间的相互作用以及它们如何共同塑造人群中的人类表型。我们提出了一种分位数积分线性模型(QUAIL)来估计遗传对性状变异性的影响。通过广泛的模拟和真实数据的分析,我们证明 QUAIL 提供了计算效率高且统计功效强大的 vQTL 映射,对非正态表型和表型变异性的混杂效应具有稳健性。应用于英国生物库(n = 375791),QUAIL 确定了 11 个以前未报道的体重指数(BMI)的 vQTL。顶级 vQTL 研究结果显示,与体力活动和久坐行为的相互作用有很大的富集。此外,基于 QUAIL 效应估计的方差多基因评分(vPGS)在人口水平和个体内 BMI 变异性的预测性能上均优于现有方法。总体而言,QUAIL 是一个统一的框架,可以在单变体和 vPGS 水平上量化遗传对表型变异性的影响。它解决了现有方法的关键局限性,并且可能在未来的基因-环境相互作用研究中具有广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d605/9522331/e6b26d1e08fd/pnas.2212959119fig02.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验